ASCOT5
Loading...
Searching...
No Matches
libascot.c
Go to the documentation of this file.
1
8#include <stdlib.h>
9#include <stdio.h>
10#include <string.h>
11#include <hdf5.h>
12#include <math.h>
13
14#include "ascot5.h"
15#include "gitver.h"
16#include "math.h"
17#include "simulate.h"
18#include "B_field.h"
19#include "E_field.h"
20#include "plasma.h"
21#include "wall.h"
22#include "neutral.h"
23#include "boozer.h"
24#include "mhd.h"
25#include "asigma.h"
26#include "consts.h"
27#include "physlib.h"
28#include "gitver.h"
29
31
32#include "hdf5_interface.h"
33#include "hdf5io/hdf5_helpers.h"
34#include "hdf5io/hdf5_bfield.h"
35#include "hdf5io/hdf5_efield.h"
36#include "hdf5io/hdf5_plasma.h"
37#include "hdf5io/hdf5_wall.h"
38#include "hdf5io/hdf5_neutral.h"
39#include "hdf5io/hdf5_boozer.h"
40#include "hdf5io/hdf5_mhd.h"
41
42
66 sim_data* sim, int Neval,
67 real* R, real* phi, real* z, real* t, real* BR, real* Bphi, real* Bz,
68 real* BR_dR, real* BR_dphi, real* BR_dz, real* Bphi_dR, real* Bphi_dphi,
69 real* Bphi_dz, real* Bz_dR, real* Bz_dphi, real* Bz_dz) {
70
71 #pragma omp parallel for
72 for(int k = 0; k < Neval; k++) {
73 real B[15];
74 if( B_field_eval_B_dB(B, R[k], phi[k], z[k], t[k], &sim->B_data) ) {
75 continue;
76 }
77 BR[k] = B[0];
78 Bphi[k] = B[4];
79 Bz[k] = B[8];
80 BR_dR[k] = B[1];
81 BR_dphi[k] = B[2];
82 BR_dz[k] = B[3];
83 Bphi_dR[k] = B[5];
84 Bphi_dphi[k] = B[6];
85 Bphi_dz[k] = B[7];
86 Bz_dR[k] = B[9];
87 Bz_dphi[k] = B[10];
88 Bz_dz[k] = B[11];
89 }
90}
91
109 sim_data* sim, int Neval,
110 real* R, real* phi, real* z, real* t, real* rho, real* drhodpsi, real* psi,
111 real* dpsidr, real* dpsidphi, real* dpsidz) {
112
113 #pragma omp parallel for
114 for(int k = 0; k < Neval; k++) {
115 real rhoval[2], psival[4];
116 if( B_field_eval_psi_dpsi(psival, R[k], phi[k], z[k], t[k],
117 &sim->B_data) ) {
118 continue;
119 }
120 psi[k] = psival[0];
121 dpsidr[k] = psival[1];
122 dpsidphi[k] = psival[2];
123 dpsidz[k] = psival[3];
124 if( B_field_eval_rho(rhoval, psival[0], &sim->B_data) ) {
125 continue;
126 }
127 rho[k] = rhoval[0];
128 drhodpsi[k] = rhoval[1];
129 }
130}
131
142 sim_data* sim, int Neval, real* phi, real* Raxis, real* zaxis) {
143
144 #pragma omp parallel for
145 for(int k = 0; k < Neval; k++) {
146 real axisrz[2];
147 if( B_field_get_axis_rz(axisrz, &sim->B_data, phi[k]) ) {
148 continue;
149 }
150 Raxis[k] = axisrz[0];
151 zaxis[k] = axisrz[1];
152 }
153}
154
174 sim_data* sim, int Neval,
175 real* rho, real* theta, real* phi, real t, int maxiter, real tol,
176 real* r, real* z) {
177
178 #pragma omp parallel for
179 for(int j=0; j<Neval; j++) {
180 real axisrz[2];
181 real rhodrho[4];
182 if( B_field_get_axis_rz(axisrz, &sim->B_data, phi[j]) ) {
183 continue;
184 }
185 if( B_field_eval_rho_drho(rhodrho, axisrz[0], phi[j], axisrz[1],
186 &sim->B_data)) {
187 continue;
188 }
189 if( rhodrho[0] > rho[j] ) {
190 /* Due to padding, rho might not be exactly zero on the axis so we
191 * return the axis position for small values of queried rho */
192 r[j] = axisrz[0];
193 z[j] = axisrz[1];
194 continue;
195 }
196
197 real a = 0.0, b = 5.0;
198 real costh = cos(theta[j]);
199 real sinth = sin(theta[j]);
200 for(int i=0; i<maxiter; i++) {
201 real c = 0.5*(a + b);
202 real rj = axisrz[0] + c * costh;
203 real zj = axisrz[1] + c * sinth;
204 if(rj < 0) {
205 b = c;
206 continue;
207 }
208 if( B_field_eval_rho_drho(rhodrho, rj, phi[j], zj, &sim->B_data) ) {
209 b = c;
210 continue;
211 }
212 if( fabs(rho[j] - rhodrho[0]) < tol ) {
213 r[j] = rj;
214 z[j] = zj;
215 break;
216 }
217 if( rho[j] < rhodrho[0]) {
218 b = c;
219 } else {
220 a = c;
221 }
222 }
223 }
224}
225
241 sim_data* sim, real psi[1],
242 real rz[2], real step, real tol, int maxiter, int ascent) {
243
244 if(ascent) {
245 step = -1 * step;
246 }
247
248 real phi = 0.0, time = 0.0;
249 real psidpsi[4], nextrz[2];
250 B_field_eval_psi_dpsi(psidpsi, rz[0], phi, rz[1], time, &sim->B_data);
251
252 int iter = 0;
253 while(1) {
254 if( B_field_eval_psi_dpsi(psidpsi, rz[0], phi, rz[1], time,
255 &sim->B_data) ) {
256 break;
257 }
258 nextrz[0] = rz[0] - step * psidpsi[1];
259 nextrz[1] = rz[1] - step * psidpsi[3];
260
261 // Check convergence
262 if(sqrt( (nextrz[0] - rz[0]) * (nextrz[0] - rz[0])
263 + (nextrz[1] - rz[1]) * (nextrz[1] - rz[1]) ) < tol) {
264 psi[0] = psidpsi[0];
265 rz[0] = nextrz[0];
266 rz[1] = nextrz[1];
267
268 // Add a bit of padding
270 psidpsi, rz[0], phi, rz[1], time, &sim->B_data);
271 psi[0] = psi[0] + (tol * psidpsi[1] + tol * psidpsi[3]);
272 break;
273 }
274
275 rz[0] = nextrz[0];
276 rz[1] = nextrz[1];
277 iter++;
278
279 if(iter == maxiter) {
280 break;
281 }
282 }
283}
284
285
302 sim_data* sim, real psi[1],
303 real rzphi[3], real phimin, real phimax, real step, real tol, int maxiter,
304 int ascent) {
305
306 if(ascent) {
307 step = -1 * step;
308 }
309
310 real time = 0.0;
311 real psidpsi[4], nextrzphi[3];
312 B_field_eval_psi_dpsi(psidpsi, rzphi[0], rzphi[2], rzphi[1], time,
313 &sim->B_data);
314
315 int iter = 0;
316 while(1) {
317 if( B_field_eval_psi_dpsi(psidpsi, rzphi[0], rzphi[2], rzphi[1], time,
318 &sim->B_data) ) {
319 break;
320 }
321 nextrzphi[0] = rzphi[0] - step * psidpsi[1]; // R
322 nextrzphi[1] = rzphi[1] - step * psidpsi[3]; // z
323 nextrzphi[2] = rzphi[2] - step/rzphi[0] * psidpsi[2]; /* phi. phidpsi[2]
324 is dimensionless,
325 must divide by R
326 because in
327 cylindrical
328 co-ordinates */
329
330 /* Check that phi remained inside the sector. If not, use the value on
331 the sector boundary. */
332 if (nextrzphi[2] > phimax) {nextrzphi[2] = phimax;}
333 if (nextrzphi[2] < phimin) {nextrzphi[2]=phimin;}
334
335 /* Check convergence (phi difference must be multiplied by R to get
336 the arc length which has dimensions of L) */
337 if(sqrt( (nextrzphi[0] - rzphi[0]) * (nextrzphi[0] - rzphi[0])
338 + (nextrzphi[1] - rzphi[1]) * (nextrzphi[1] - rzphi[1])
339 + rzphi[0]*(nextrzphi[2] - rzphi[2]) *
340 rzphi[0]*(nextrzphi[2] - rzphi[2])) < tol){
341 psi[0] = psidpsi[0];
342 rzphi[0] = nextrzphi[0];
343 rzphi[1] = nextrzphi[1];
344 rzphi[2] = nextrzphi[2];
345
346 // Add a bit of padding
348 psidpsi, rzphi[0], rzphi[2], rzphi[1], time, &sim->B_data);
349 psi[0] = psi[0]
350 + (tol * ( psidpsi[1] + psidpsi[2]/rzphi[0] + psidpsi[3] ));
351 break;
352 }
353
354 rzphi[0] = nextrzphi[0];
355 rzphi[1] = nextrzphi[1];
356 rzphi[2] = nextrzphi[2];
357 iter++;
358
359 if(iter == maxiter) {
360 break;
361 }
362 }
363}
364
365
380 sim_data* sim, int Neval, real* R, real* phi, real* z, real* t,
381 real* ER, real* Ephi, real* Ez) {
382
383 #pragma omp parallel for
384 for(int k = 0; k < Neval; k++) {
385 real E[3];
386 if( E_field_eval_E(E, R[k], phi[k], z[k], t[k],
387 &sim->E_data, &sim->B_data) ) {
388 continue;
389 }
390 ER[k] = E[0];
391 Ephi[k] = E[1];
392 Ez[k] = E[2];
393 }
394}
395
406
417 sim_data* sim, real* mass, real* charge, int* anum, int* znum) {
418
419 int n_species = plasma_get_n_species(&sim->plasma_data);
420 const real* m = plasma_get_species_mass(&sim->plasma_data);
422 const int* a = plasma_get_species_anum(&sim->plasma_data);
423 const int* z = plasma_get_species_znum(&sim->plasma_data);
424 mass[0] = CONST_M_E;
425 charge[0] = -CONST_E;
426 anum[0] = 0;
427 znum[0] = 0;
428 for(int i=1; i<n_species; i++) {
429 mass[i] = m[i];
430 charge[i] = q[i];
431 anum[i] = a[i-1];
432 znum[i] = z[i-1];
433 }
434}
435
449 sim_data* sim, int Neval, real* R, real* phi, real* z, real* t,
450 real* dens, real* temp) {
451
452 int n_species = plasma_get_n_species(&sim->plasma_data);
453
454 #pragma omp parallel for
455 for(int k = 0; k < Neval; k++) {
456 real psi[1], rho[2], n[MAX_SPECIES], T[MAX_SPECIES];
457 if( B_field_eval_psi(psi, R[k], phi[k], z[k], t[k], &sim->B_data) ) {
458 continue;
459 }
460 if( B_field_eval_rho(rho, psi[0], &sim->B_data) ) {
461 continue;
462 }
463 if( plasma_eval_densandtemp(n, T, rho[0], R[k], phi[k], z[k], t[k],
464 &sim->plasma_data) ) {
465 continue;
466 }
467 for(int i=0; i<n_species; i++) {
468 dens[k + i*Neval] = n[i];
469 temp[k + i*Neval] = T[i]/CONST_E;
470 }
471 }
472}
473
486 sim_data* sim, int Neval, real* R, real* phi, real* z, real* t, real* dens) {
487
488 #pragma omp parallel for
489 for(int k = 0; k < Neval; k++) {
490 real psi[1], rho[2], n0[1];
491 if( B_field_eval_psi(psi, R[k], phi[k], z[k], t[k], &sim->B_data) ) {
492 continue;
493 }
494 if( B_field_eval_rho(rho, psi[0], &sim->B_data) ) {
495 continue;
496 }
497 if( neutral_eval_n0(n0, rho[0], R[k], phi[k], z[k], t[k],
498 &sim->neutral_data) ) {
499 continue;
500 }
501 dens[k] = n0[0];
502 }
503}
504
529 sim_data* sim, int Neval,
530 real* R, real* phi, real* z, real* t, real* psi, real* theta, real* zeta,
531 real* dpsidr, real* dpsidphi, real* dpsidz, real* dthetadr,
532 real* dthetadphi, real* dthetadz, real* dzetadr, real* dzetadphi,
533 real* dzetadz, real* rho) {
534
535 #pragma omp parallel for
536 for(int k = 0; k < Neval; k++) {
537 int isinside;
538 real psithetazeta[12], rhoval[2];
539 if( boozer_eval_psithetazeta(psithetazeta, &isinside, R[k], phi[k],
540 z[k], &sim->B_data, &sim->boozer_data) ) {
541 continue;
542 }
543 if(!isinside) {
544 continue;
545 }
546 if( B_field_eval_rho(rhoval, psithetazeta[0], &sim->B_data) ) {
547 continue;
548 }
549 psi[k] = psithetazeta[0];
550 theta[k] = psithetazeta[4];
551 zeta[k] = psithetazeta[8];
552 dpsidr[k] = psithetazeta[1];
553 dpsidphi[k] = psithetazeta[2];
554 dpsidz[k] = psithetazeta[3];
555 dthetadr[k] = psithetazeta[5];
556 dthetadphi[k] = psithetazeta[6];
557 dthetadz[k] = psithetazeta[7];
558 dzetadr[k] = psithetazeta[9];
559 dzetadphi[k] = psithetazeta[10];
560 dzetadz[k] = psithetazeta[11];
561 rho[k] = rhoval[0];
562 }
563}
564
579 sim_data* sim, int Neval, real* R, real* phi, real* z, real* t,
580 real* qprof, real* jac, real* jacB2) {
581
582 #pragma omp parallel for
583 for(int k = 0; k < Neval; k++) {
584 int isinside;
585 real psithetazeta[12], B[15];
586 if( boozer_eval_psithetazeta(psithetazeta, &isinside, R[k], phi[k],
587 z[k], &sim->B_data, &sim->boozer_data) ) {
588 continue;
589 }
590 if(!isinside) {
591 continue;
592 }
593 if( B_field_eval_B_dB(B, R[k], phi[k], z[k], t[k], &sim->B_data) ) {
594 continue;
595 }
596
597 real bvec[] = {B[0], B[4], B[8]};
598 real gradpsi[] = {psithetazeta[1],
599 psithetazeta[2]/R[k],
600 psithetazeta[3]};
601 real gradtheta[] = {psithetazeta[5],
602 psithetazeta[6]/R[k],
603 psithetazeta[7]};
604 real gradzeta[] = {psithetazeta[9],
605 psithetazeta[10]/R[k],
606 psithetazeta[11]};
607
608 real veca[3], vecb[3];
609
610 math_cross(gradpsi, gradzeta, veca);
611 math_cross(gradpsi, gradtheta, vecb);
612 qprof[k] = (veca[1] - bvec[1]) / vecb[1];
613
614 math_cross(gradtheta, gradzeta, veca);
615 jac[k] = -1.0 / math_dot(veca, gradpsi);
616 jacB2[k] = jac[k]*math_norm(bvec)*math_norm(bvec);
617 }
618}
619
628
629 return mhd_get_n_modes(&sim->mhd_data);
630}
631
643 sim_data* sim, int* nmode, int* mmode, real* amplitude, real* omega,
644 real* phase) {
645
646 int n_modes = mhd_get_n_modes(&sim->mhd_data);
647 const int* n = mhd_get_nmode(&sim->mhd_data);
648 const int* m = mhd_get_mmode(&sim->mhd_data);
649 const real* a = mhd_get_amplitude(&sim->mhd_data);
650 const real* o = mhd_get_frequency(&sim->mhd_data);
651 const real* p = mhd_get_phase(&sim->mhd_data);
652 for(int i=0; i<n_modes; i++) {
653 nmode[i] = n[i];
654 mmode[i] = m[i];
655 amplitude[i] = a[i];
656 omega[i] = o[i];
657 phase[i] = p[i];
658 }
659}
660
683 sim_data* sim, int Neval,
684 real* R, real* phi, real* z, real* t, int includemode,
685 real* alpha, real* dadr, real* dadphi, real* dadz, real* dadt, real* Phi,
686 real* dPhidr, real* dPhidphi, real* dPhidz, real* dPhidt) {
687
688 #pragma omp parallel for
689 for(int k = 0; k < Neval; k++) {
690 real mhd_dmhd[10];
691 if( mhd_eval(mhd_dmhd, R[k], phi[k], z[k], t[k], includemode,
692 &sim->boozer_data, &sim->mhd_data, &sim->B_data) ) {
693 continue;
694 }
695 alpha[k] = mhd_dmhd[0];
696 dadr[k] = mhd_dmhd[2];
697 dadphi[k] = mhd_dmhd[3];
698 dadz[k] = mhd_dmhd[4];
699 dadt[k] = mhd_dmhd[1];
700 Phi[k] = mhd_dmhd[5];
701 dPhidr[k] = mhd_dmhd[7];
702 dPhidphi[k] = mhd_dmhd[8];
703 dPhidz[k] = mhd_dmhd[9];
704 dPhidt[k] = mhd_dmhd[6];
705 }
706}
707
727 sim_data* sim, int Neval,
728 real* R, real* phi, real* z, real* t, int includemode, real* mhd_br,
729 real* mhd_bphi, real* mhd_bz, real* mhd_er, real* mhd_ephi, real* mhd_ez,
730 real* mhd_phi) {
731
732 int onlypert = 1;
733 #pragma omp parallel for
734 for(int k = 0; k < Neval; k++) {
735 real pert_field[7];
736 if( mhd_perturbations(pert_field, R[k], phi[k], z[k], t[k], onlypert,
737 includemode, &sim->boozer_data, &sim->mhd_data,
738 &sim->B_data) ) {
739 continue;
740 }
741 mhd_br[k] = pert_field[0];
742 mhd_bphi[k] = pert_field[1];
743 mhd_bz[k] = pert_field[2];
744 mhd_er[k] = pert_field[3];
745 mhd_ephi[k] = pert_field[4];
746 mhd_ez[k] = pert_field[5];
747 mhd_phi[k] = pert_field[6];
748 }
749}
750
778 sim_data* sim, int Neval, real* R, real* phi, real* z, real* t,
779 int Nv, real* va, real ma, real qa, real* F, real* Dpara, real* Dperp,
780 real* K, real* nu, real* Q, real* dQ, real* dDpara, real* clog,
781 real* mu0, real* mu1, real* dmu0) {
782
783 /* Evaluate plasma parameters */
784 int n_species = plasma_get_n_species(&sim->plasma_data);
785 const real* qb = plasma_get_species_charge(&sim->plasma_data);
786 const real* mb = plasma_get_species_mass(&sim->plasma_data);
787
788 #pragma omp parallel for
789 for(int k=0; k<Neval; k++) {
790 real mufun[3] = {0., 0., 0.};
791
792 /* Evaluate rho as it is needed to evaluate plasma parameters */
793 real psi, rho[2];
794 if( B_field_eval_psi(&psi, R[k], phi[k], z[k], t[k], &sim->B_data) ) {
795 continue;
796 }
797 if( B_field_eval_rho(rho, psi, &sim->B_data) ) {
798 continue;
799 }
800
802 if( plasma_eval_densandtemp(nb, Tb, rho[0], R[k], phi[k], z[k], t[k],
803 &sim->plasma_data) ) {
804 continue;
805 }
806
807 /* Evaluate coefficients for different velocities */
808 for(int iv=0; iv<Nv; iv++) {
809
810 /* Loop through all plasma species */
811 for(int ib=0; ib<n_species; ib++) {
812
813 /* Coulomb logarithm */
814 real clogab[MAX_SPECIES];
815 mccc_coefs_clog(clogab, ma, qa, va[iv], n_species, mb, qb,
816 nb, Tb);
817
818 /* Special functions */
819 real vb = sqrt( 2 * Tb[ib] / mb[ib] );
820 real x = va[iv] / vb;
821 mccc_coefs_mufun(mufun, x, &sim->mccc_data);
822
823 /* Coefficients */
824 real Fb = mccc_coefs_F(ma, qa, mb[ib], qb[ib], nb[ib], vb,
825 clogab[ib], mufun[0]);
826 real Qb = mccc_coefs_Q(ma, qa, mb[ib], qb[ib], nb[ib], vb,
827 clogab[ib], mufun[0]);
828 real dQb = mccc_coefs_dQ(ma, qa, mb[ib], qb[ib], nb[ib], vb,
829 clogab[ib], mufun[2]);
830 real Dparab = mccc_coefs_Dpara(ma, qa, va[iv], qb[ib], nb[ib],
831 vb, clogab[ib], mufun[0]);
832 real Dperpb = mccc_coefs_Dperp(ma, qa, va[iv], qb[ib], nb[ib],
833 vb, clogab[ib], mufun[1]);
834 real dDparab = mccc_coefs_dDpara(ma, qa, va[iv], qb[ib], nb[ib],
835 vb, clogab[ib], mufun[0],
836 mufun[2]);
837 real Kb = mccc_coefs_K(va[iv], Dparab, dDparab, Qb);
838 real nub = mccc_coefs_nu(va[iv], Dperpb);
839
840 /* Store requested quantities */
841 int idx = ib*Nv*Neval + Nv * k + iv;
842 if(mu0 != NULL) { mu0[idx] = mufun[0]; }
843 if(mu1 != NULL) { mu1[idx] = mufun[1]; }
844 if(dmu0 != NULL) { dmu0[idx] = mufun[2]; }
845 if(clog != NULL) { clog[idx] = clogab[ib]; }
846 if(F != NULL) { F[idx] = Fb; }
847 if(Dpara != NULL) { Dpara[idx] = Dparab; }
848 if(Dperp != NULL) { Dperp[idx] = Dperpb; }
849 if(K != NULL) { K[idx] = Kb; }
850 if(nu != NULL) { nu[idx] = nub; }
851 if(Q != NULL) { Q[idx] = Qb; }
852 if(dQ != NULL) { dQ[idx] = dQb; }
853 if(dDpara != NULL) { dDpara[idx] = dDparab; }
854 }
855 }
856 }
857}
858
877 sim_data* sim,
878 int Neval, real* R, real* phi, real* z, real* t, int Nv, real* va,
879 int Aa, int Za, real ma, int reac_type, real* ratecoeff) {
880
881 const int* Zb = plasma_get_species_znum(&sim->plasma_data);
882 const int* Ab = plasma_get_species_anum(&sim->plasma_data);
883 int nion = plasma_get_n_species(&sim->plasma_data) - 1;
884 int nspec = neutral_get_n_species(&sim->neutral_data);
885
886 #pragma omp parallel for
887 for (int k=0; k < Neval; k++) {
888 real psi[1], rho[2], T0[1], n[MAX_SPECIES], T[MAX_SPECIES],
889 n0[MAX_SPECIES];
890 if( B_field_eval_psi(psi, R[k], phi[k], z[k], t[k], &sim->B_data) ) {
891 continue;
892 }
893 if( B_field_eval_rho(rho, psi[0], &sim->B_data) ) {
894 continue;
895 }
896 if( plasma_eval_densandtemp(n, T, rho[0], R[k], phi[k], z[k], t[k],
897 &sim->plasma_data) ) {
898 continue;
899 }
900 if( neutral_eval_t0(T0, rho[0], R[k], phi[k], z[k], t[k],
901 &sim->neutral_data) ) {
902 continue;
903 }
904 if( neutral_eval_n0(n0, rho[0], R[k], phi[k], z[k], t[k],
905 &sim->neutral_data) ) {
906 continue;
907 }
908 for (int j=0; j < Nv; j++) {
909 real E = (physlib_gamma_vnorm(va[j]) - 1.0) * ma * CONST_C*CONST_C;
910 real val;
911 switch (reac_type) {
912 case sigmav_CX:
913 if( asigma_eval_cx(
914 &val, Za, Aa, E, ma, nspec, Zb, Ab, T0[0], n0,
915 &sim->asigma_data) ) {
916 continue;
917 }
918 ratecoeff[Nv*k + j] = val;
919 break;
920 case sigmav_BMS:
921 if( asigma_eval_bms(
922 &val, Za, Aa, E, ma, nion, Zb, Ab, T[0], n,
923 &sim->asigma_data) ) {
924 continue;
925 }
926 ratecoeff[Nv*k + j] = val * n[0];
927 break;
928 default:
929 break;
930 }
931 }
932 }
933
934}
935
982 sim_data* sim, real* B_offload_array, int Neval,
983 real* R, real* phi, real* z, real* t, real mass, real q, real vpar,
984 real* Eplus_real, real* Eminus_real, real* Eplus_imag, real* Eminus_imag,
985 real* res_cond) {
986
987 #pragma omp parallel
988 {
989 /* The function that evaluates resonance condition takes an RFOF marker
990 * as an input. However, only the R and vpar values are actually used.
991 * Therefore, we initialize a dummy marker and adjust only the values of
992 * R and vpar. */
993 rfof_marker rfof_mrk;
994 int dummy_int = 1;
995 real dummy_real = -999.0; /*-999.0 to be on the safe side */
996 rfof_set_up(&rfof_mrk, &sim->rfof_data);
997
998 #pragma omp for
999 for(int k = 0; k < Neval; k++) {
1000 real B[3];
1001 if( B_field_eval_B(B, R[k], phi[k], z[k], t[k], &sim->B_data) ) {
1002 continue;
1003 }
1004 real B_magn = sqrt(B[0]*B[0] + B[1]*B[1] + B[2]*B[2]);
1005 real gyrofreq = q * B_magn / mass;
1006 rfof_set_marker_manually(&rfof_mrk, &dummy_int,
1007 &dummy_real, &(R[k]), &dummy_real, &dummy_real, &dummy_real,
1008 &dummy_real, &dummy_real, &dummy_real, &dummy_real, &dummy_real,
1009 &dummy_real, &vpar, &dummy_real, &gyrofreq, &dummy_real,
1010 &dummy_real, &dummy_int, &dummy_int);
1011
1012 int nharm; /* For storing return value which is not used */
1013 rfof_eval_resonance_function(
1014 &(res_cond[k]), &nharm, &rfof_mrk, &sim->rfof_data);
1015
1016 // TODO: this should return a non-zero value for failed evaluations
1017 rfof_eval_rf_wave(
1018 &(Eplus_real[k]), &(Eminus_real[k]), &(Eplus_imag[k]),
1019 &(Eminus_imag[k]), R[k], z[k], &sim->rfof_data);
1020 }
1021 rfof_tear_down(&rfof_mrk);
1022 }
1023}
a5err B_field_eval_psi_dpsi(real psi_dpsi[4], real r, real phi, real z, real t, B_field_data *Bdata)
Evaluate poloidal flux psi and its derivatives.
Definition B_field.c:166
a5err B_field_eval_rho(real rho[2], real psi, B_field_data *Bdata)
Evaluate normalized poloidal flux rho and its psi derivative.
Definition B_field.c:228
a5err B_field_eval_psi(real *psi, real r, real phi, real z, real t, B_field_data *Bdata)
Evaluate poloidal flux psi.
Definition B_field.c:102
a5err B_field_eval_B_dB(real B_dB[15], real r, real phi, real z, real t, B_field_data *Bdata)
Evaluate magnetic field and its derivatives.
Definition B_field.c:449
a5err B_field_eval_rho_drho(real rho_drho[4], real r, real phi, real z, B_field_data *Bdata)
Evaluate normalized poloidal flux rho and its derivatives.
Definition B_field.c:312
a5err B_field_get_axis_rz(real rz[2], B_field_data *Bdata, real phi)
Return magnetic axis Rz-coordinates.
Definition B_field.c:501
a5err B_field_eval_B(real B[3], real r, real phi, real z, real t, B_field_data *Bdata)
Evaluate magnetic field.
Definition B_field.c:374
Header file for B_field.c.
a5err E_field_eval_E(real E[3], real r, real phi, real z, real t, E_field_data *Edata, B_field_data *Bdata)
Evaluate electric field.
Definition E_field.c:82
Header file for E_field.c.
Main header file for ASCOT5.
double real
Definition ascot5.h:85
#define MAX_SPECIES
Maximum number of plasma species.
Definition ascot5.h:95
a5err asigma_eval_cx(real *ratecoeff, int z_1, int a_1, real E, real mass, int nspec, const int *znum, const int *anum, real T_0, real *n_0, asigma_data *asigma_data)
Evaluate charge exchange rate coefficient.
Definition asigma.c:191
a5err asigma_eval_bms(real *ratecoeff, int z_1, int a_1, real E, real mass, int nion, const int *znum, const int *anum, real T_e, real *n_i, asigma_data *asigma_data)
Evaluate beam stopping rate coefficient.
Definition asigma.c:237
Header file for asigma.c.
a5err boozer_eval_psithetazeta(real psithetazeta[12], int *isinside, real r, real phi, real z, B_field_data *Bdata, boozer_data *boozerdata)
Evaluate Boozer coordinates and partial derivatives.
Definition boozer.c:124
Header file for boozer.c.
Header file containing physical and mathematical constants.
#define CONST_M_E
Electron mass [kg].
Definition consts.h:41
#define CONST_C
Speed of light [m/s].
Definition consts.h:23
#define CONST_E
Elementary charge [C].
Definition consts.h:35
Header file for hdf5_bfield.c.
Header file for hdf5_boozer.c.
Header file for hdf5_efielc.c.
Header file for hdf5_helpers.h.
Header file for hdf5_interface.c.
Header file for hdf5_mhd.c.
Header file for hdf5_neutral.c.
Header file for hdf5_plasma.c.
Header file for hdf5_wall.c.
@ R
Definition hist.h:18
void libascot_neutral_eval_density(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, real *dens)
Evaluate neutral density at given coordinates.
Definition libascot.c:485
void libascot_eval_rfof(sim_data *sim, real *B_offload_array, int Neval, real *R, real *phi, real *z, real *t, real mass, real q, real vpar, real *Eplus_real, real *Eminus_real, real *Eplus_imag, real *Eminus_imag, real *res_cond)
Evaluate ICRH electric field and the resonance condition.
Definition libascot.c:981
void libascot_E_field_eval_E(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, real *ER, real *Ephi, real *Ez)
Evaluate electric field vector at given coordinates.
Definition libascot.c:379
void libascot_eval_collcoefs(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, int Nv, real *va, real ma, real qa, real *F, real *Dpara, real *Dperp, real *K, real *nu, real *Q, real *dQ, real *dDpara, real *clog, real *mu0, real *mu1, real *dmu0)
Evaluate collision coefficients.
Definition libascot.c:777
void libascot_boozer_eval_fun(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, real *qprof, real *jac, real *jacB2)
Evaluate boozer coordinates related quantities.
Definition libascot.c:578
void libascot_B_field_gradient_descent_3d(sim_data *sim, real psi[1], real rzphi[3], real phimin, real phimax, real step, real tol, int maxiter, int ascent)
Find one psi minimum using the gradient descent method for 3D field inside a sector (phimin < phi < p...
Definition libascot.c:301
void libascot_eval_ratecoeff(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, int Nv, real *va, int Aa, int Za, real ma, int reac_type, real *ratecoeff)
Evaluate atomic reaction rate coefficient.
Definition libascot.c:876
void libascot_mhd_eval_perturbation(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, int includemode, real *mhd_br, real *mhd_bphi, real *mhd_bz, real *mhd_er, real *mhd_ephi, real *mhd_ez, real *mhd_phi)
Evaluate MHD perturbation EM-field components.
Definition libascot.c:726
int libascot_plasma_get_n_species(sim_data *sim)
Get number of plasma species.
Definition libascot.c:403
void libascot_mhd_get_mode_specs(sim_data *sim, int *nmode, int *mmode, real *amplitude, real *omega, real *phase)
Get MHD mode amplitude, frequency, phase, and mode numbers.
Definition libascot.c:642
void libascot_plasma_eval_background(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, real *dens, real *temp)
Evaluate plasma density and temperature at given coordinates.
Definition libascot.c:448
void libascot_boozer_eval_psithetazeta(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, real *psi, real *theta, real *zeta, real *dpsidr, real *dpsidphi, real *dpsidz, real *dthetadr, real *dthetadphi, real *dthetadz, real *dzetadr, real *dzetadphi, real *dzetadz, real *rho)
Evaluate boozer coordinates and derivatives.
Definition libascot.c:528
int libascot_mhd_get_n_modes(sim_data *sim)
Get number of MHD modes.
Definition libascot.c:627
void libascot_B_field_rhotheta2rz(sim_data *sim, int Neval, real *rho, real *theta, real *phi, real t, int maxiter, real tol, real *r, real *z)
Map (rho, theta, phi) to (R,z) coordinates.
Definition libascot.c:173
void libascot_B_field_eval_B_dB(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, real *BR, real *Bphi, real *Bz, real *BR_dR, real *BR_dphi, real *BR_dz, real *Bphi_dR, real *Bphi_dphi, real *Bphi_dz, real *Bz_dR, real *Bz_dphi, real *Bz_dz)
Evaluate magnetic field vector and derivatives at given coordinates.
Definition libascot.c:65
void libascot_B_field_get_axis(sim_data *sim, int Neval, real *phi, real *Raxis, real *zaxis)
Get magnetic axis at given coordinates.
Definition libascot.c:141
void libascot_plasma_get_species_mass_and_charge(sim_data *sim, real *mass, real *charge, int *anum, int *znum)
Get mass and charge of all plasma species.
Definition libascot.c:416
void libascot_mhd_eval(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, int includemode, real *alpha, real *dadr, real *dadphi, real *dadz, real *dadt, real *Phi, real *dPhidr, real *dPhidphi, real *dPhidz, real *dPhidt)
Evaluate MHD perturbation potentials.
Definition libascot.c:682
void libascot_B_field_gradient_descent(sim_data *sim, real psi[1], real rz[2], real step, real tol, int maxiter, int ascent)
Find psi on axis using the gradient descent method.
Definition libascot.c:240
void libascot_B_field_eval_rho(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, real *rho, real *drhodpsi, real *psi, real *dpsidr, real *dpsidphi, real *dpsidz)
Evaluate normalized poloidal flux at given coordinates.
Definition libascot.c:108
Header file for math.c.
#define math_dot(a, b)
Calculate dot product a[3] dot b[3].
Definition math.h:31
#define math_cross(a, b, c)
Calculate cross product for 3D vectors c = a x b.
Definition math.h:34
#define math_norm(a)
Calculate norm of 3D vector a.
Definition math.h:67
Routines to evaluate coefficients needed to evaluate collisions.
#define mccc_coefs_Dpara(ma, qa, va, qb, nb, vb, clogab, mu0)
Evaluate non-relativistic parallel diffusion coefficient [m^2/s^3].
Definition mccc_coefs.h:103
#define mccc_coefs_dDpara(ma, qa, va, qb, nb, vb, clogab, mu0, dmu0)
Evaluate derivative of non-relativistic parallel diffusion coefficient [m/s^2].
Definition mccc_coefs.h:126
#define mccc_coefs_dQ(ma, qa, mb, qb, nb, vb, clogab, dmu0)
Evaluate derivative of non-relativistic drag coefficient [m/s^2].
Definition mccc_coefs.h:61
#define mccc_coefs_K(va, Dpara, dDpara, Q)
Evaluate guiding center drag coefficient [m/s^2].
Definition mccc_coefs.h:167
static void mccc_coefs_mufun(real mufun[3], real x, mccc_data *mdata)
Evaluate special functions needed by collision coefficients.
Definition mccc_coefs.h:275
#define mccc_coefs_Dperp(ma, qa, va, qb, nb, vb, clogab, mu1)
Evaluate non-relativistic perpendicular diffusion coefficient [m^2/s^3].
Definition mccc_coefs.h:150
#define mccc_coefs_nu(va, Dperp)
Evaluate pitch collision frequency [1/s].
Definition mccc_coefs.h:180
#define mccc_coefs_F(ma, qa, mb, qb, nb, vb, clogab, mu0)
Evaluate non-relativistic friction coefficient [m/s^2].
Definition mccc_coefs.h:80
static DECLARE_TARGET_END void mccc_coefs_clog(real *clogab, real ma, real qa, real va, int nspec, const real *mb, const real *qb, const real *nb, const real *Tb)
Evaluate Coulomb logarithm.
Definition mccc_coefs.h:228
#define mccc_coefs_Q(ma, qa, mb, qb, nb, vb, clogab, mu0)
Evaluate non-relativistic drag coefficient [m/s^2].
Definition mccc_coefs.h:43
int mhd_get_n_modes(mhd_data *mhddata)
Return number of modes.
Definition mhd.c:183
const real * mhd_get_amplitude(mhd_data *mhddata)
Return mode amplitudes.
Definition mhd.c:243
const int * mhd_get_nmode(mhd_data *mhddata)
Return mode toroidal numbers.
Definition mhd.c:203
a5err mhd_perturbations(real pert_field[7], real r, real phi, real z, real t, int pertonly, int includemode, boozer_data *boozerdata, mhd_data *mhddata, B_field_data *Bdata)
Evaluate perturbed fields Btilde, Etilde and potential Phi explicitly.
Definition mhd.c:147
const int * mhd_get_mmode(mhd_data *mhddata)
Return mode poloidal numbers.
Definition mhd.c:223
const real * mhd_get_frequency(mhd_data *mhddata)
Return mode frequencies.
Definition mhd.c:263
a5err mhd_eval(real mhd_dmhd[10], real r, real phi, real z, real t, int includemode, boozer_data *boozerdata, mhd_data *mhddata, B_field_data *Bdata)
Evaluate the needed quantities from MHD mode for orbit following.
Definition mhd.c:91
const real * mhd_get_phase(mhd_data *mhddata)
Return mode phases.
Definition mhd.c:283
Header file for mhd.c.
int neutral_get_n_species(neutral_data *ndata)
Get the number of neutral species.
Definition neutral.c:151
a5err neutral_eval_n0(real *n0, real rho, real r, real phi, real z, real t, neutral_data *ndata)
Evaluate neutral density.
Definition neutral.c:73
a5err neutral_eval_t0(real *t0, real rho, real r, real phi, real z, real t, neutral_data *ndata)
Evaluate neutral temperature.
Definition neutral.c:115
Header file for neutral.c.
Methods to evaluate elementary physical quantities.
#define physlib_gamma_vnorm(v)
Evaluate Lorentz factor from velocity norm.
Definition physlib.h:21
const real * plasma_get_species_mass(plasma_data *pls_data)
Get mass of all plasma species.
Definition plasma.c:314
const int * plasma_get_species_znum(plasma_data *pls_data)
Get charge number of ion species.
Definition plasma.c:372
int plasma_get_n_species(plasma_data *pls_data)
Get the number of plasma species.
Definition plasma.c:284
const real * plasma_get_species_charge(plasma_data *pls_data)
Get charge of all plasma species.
Definition plasma.c:344
a5err plasma_eval_densandtemp(real *dens, real *temp, real rho, real r, real phi, real z, real t, plasma_data *pls_data)
Evaluate plasma density and temperature for all species.
Definition plasma.c:186
const int * plasma_get_species_anum(plasma_data *pls_data)
Get atomic mass number of ion species.
Definition plasma.c:400
Header file for plasma.c.
Header file for simulate.c.
Reusable struct for storing marker specific data during the simulation loop.
Definition rfof.h:19
Simulation data struct.
Definition simulate.h:58
plasma_data plasma_data
Definition simulate.h:62
mhd_data mhd_data
Definition simulate.h:66
rfof_data rfof_data
Definition simulate.h:70
E_field_data E_data
Definition simulate.h:61
mccc_data mccc_data
Definition simulate.h:75
neutral_data neutral_data
Definition simulate.h:63
boozer_data boozer_data
Definition simulate.h:65
B_field_data B_data
Definition simulate.h:60
asigma_data asigma_data
Definition simulate.h:67
Header file for wall.c.