ASCOT5
Loading...
Searching...
No Matches
libascot.c
Go to the documentation of this file.
1
8#include <stdlib.h>
9#include <stdio.h>
10#include <string.h>
11#include <hdf5.h>
12#include <math.h>
13
14#include "ascot5.h"
15#include "gitver.h"
16#include "math.h"
17#include "simulate.h"
18#include "B_field.h"
19#include "E_field.h"
20#include "plasma.h"
21#include "wall.h"
22#include "neutral.h"
23#include "boozer.h"
24#include "mhd.h"
25#include "asigma.h"
26#include "consts.h"
27#include "physlib.h"
28#include "gitver.h"
29
31
32#include "hdf5_interface.h"
33#include "hdf5io/hdf5_helpers.h"
34#include "hdf5io/hdf5_bfield.h"
35#include "hdf5io/hdf5_efield.h"
36#include "hdf5io/hdf5_plasma.h"
37#include "hdf5io/hdf5_wall.h"
38#include "hdf5io/hdf5_neutral.h"
39#include "hdf5io/hdf5_boozer.h"
40#include "hdf5io/hdf5_mhd.h"
41
42
66 sim_data* sim, int Neval,
67 real* R, real* phi, real* z, real* t, real* BR, real* Bphi, real* Bz,
68 real* BR_dR, real* BR_dphi, real* BR_dz, real* Bphi_dR, real* Bphi_dphi,
69 real* Bphi_dz, real* Bz_dR, real* Bz_dphi, real* Bz_dz) {
70
71 #pragma omp parallel for
72 for(int k = 0; k < Neval; k++) {
73 real B[15];
74 if( B_field_eval_B_dB(B, R[k], phi[k], z[k], t[k], &sim->B_data) ) {
75 continue;
76 }
77 BR[k] = B[0];
78 Bphi[k] = B[4];
79 Bz[k] = B[8];
80 BR_dR[k] = B[1];
81 BR_dphi[k] = B[2];
82 BR_dz[k] = B[3];
83 Bphi_dR[k] = B[5];
84 Bphi_dphi[k] = B[6];
85 Bphi_dz[k] = B[7];
86 Bz_dR[k] = B[9];
87 Bz_dphi[k] = B[10];
88 Bz_dz[k] = B[11];
89 }
90}
91
109 sim_data* sim, int Neval,
110 real* R, real* phi, real* z, real* t, real* rho, real* drhodpsi, real* psi,
111 real* dpsidr, real* dpsidphi, real* dpsidz) {
112
113 #pragma omp parallel for
114 for(int k = 0; k < Neval; k++) {
115 real rhoval[2], psival[4];
116 if( B_field_eval_psi_dpsi(psival, R[k], phi[k], z[k], t[k],
117 &sim->B_data) ) {
118 continue;
119 }
120 psi[k] = psival[0];
121 dpsidr[k] = psival[1];
122 dpsidphi[k] = psival[2];
123 dpsidz[k] = psival[3];
124 if( B_field_eval_rho(rhoval, psival[0], &sim->B_data) ) {
125 continue;
126 }
127 rho[k] = rhoval[0];
128 drhodpsi[k] = rhoval[1];
129 }
130}
131
142 sim_data* sim, int Neval, real* phi, real* Raxis, real* zaxis) {
143
144 #pragma omp parallel for
145 for(int k = 0; k < Neval; k++) {
146 real axisrz[2];
147 if( B_field_get_axis_rz(axisrz, &sim->B_data, phi[k]) ) {
148 continue;
149 }
150 Raxis[k] = axisrz[0];
151 zaxis[k] = axisrz[1];
152 }
153}
154
174 sim_data* sim, int Neval,
175 real* rho, real* theta, real* phi, real t, int maxiter, real tol,
176 real* r, real* z) {
177
178 #pragma omp parallel for
179 for(int j=0; j<Neval; j++) {
180 real axisrz[2];
181 real rhodrho[4];
182 if( B_field_get_axis_rz(axisrz, &sim->B_data, phi[j]) ) {
183 continue;
184 }
185 if( B_field_eval_rho_drho(rhodrho, axisrz[0], phi[j], axisrz[1],
186 &sim->B_data)) {
187 continue;
188 }
189 if( rhodrho[0] > rho[j] ) {
190 /* Due to padding, rho might not be exactly zero on the axis so we
191 * return the axis position for small values of queried rho */
192 r[j] = axisrz[0];
193 z[j] = axisrz[1];
194 continue;
195 }
196
197 real a = 0.0, b = 5.0;
198 real costh = cos(theta[j]);
199 real sinth = sin(theta[j]);
200 for(int i=0; i<maxiter; i++) {
201 real c = 0.5*(a + b);
202 real rj = axisrz[0] + c * costh;
203 real zj = axisrz[1] + c * sinth;
204 if(rj < 0) {
205 b = c;
206 continue;
207 }
208 if( B_field_eval_rho_drho(rhodrho, rj, phi[j], zj, &sim->B_data) ) {
209 b = c;
210 continue;
211 }
212 if( fabs(rho[j] - rhodrho[0]) < tol ) {
213 r[j] = rj;
214 z[j] = zj;
215 break;
216 }
217 if( rho[j] < rhodrho[0]) {
218 b = c;
219 } else {
220 a = c;
221 }
222 }
223 }
224}
225
242 sim_data* sim, real psi[1],
243 real rz[2], real phi, real step, real tol, int maxiter, int ascent) {
244
245 if(ascent) {
246 step = -1 * step;
247 }
248
249 real time = 0.0;
250 real psidpsi[4], nextrz[2];
251 B_field_eval_psi_dpsi(psidpsi, rz[0], phi, rz[1], time, &sim->B_data);
252
253 int iter = 0;
254 while(1) {
255 if( B_field_eval_psi_dpsi(psidpsi, rz[0], phi, rz[1], time,
256 &sim->B_data) ) {
257 break;
258 }
259 nextrz[0] = rz[0] - step * psidpsi[1];
260 nextrz[1] = rz[1] - step * psidpsi[3];
261
262 // Check convergence
263 if(sqrt( (nextrz[0] - rz[0]) * (nextrz[0] - rz[0])
264 + (nextrz[1] - rz[1]) * (nextrz[1] - rz[1]) ) < tol) {
265 psi[0] = psidpsi[0];
266 rz[0] = nextrz[0];
267 rz[1] = nextrz[1];
268
269 // Add a bit of padding
271 psidpsi, rz[0], phi, rz[1], time, &sim->B_data);
272 psi[0] = psi[0] + (tol * psidpsi[1] + tol * psidpsi[3]);
273 break;
274 }
275
276 rz[0] = nextrz[0];
277 rz[1] = nextrz[1];
278 iter++;
279
280 if(iter == maxiter) {
281 break;
282 }
283 }
284}
285
286
305 sim_data* sim, real psi[1],
306 real rzphi[3], real phimin, real phimax, real step, real tol, int maxiter,
307 int ascent) {
308
309 if(ascent) {
310 step = -1 * step;
311 }
312
313 real time = 0.0;
314 real psidpsi[4], nextrzphi[3];
315 B_field_eval_psi_dpsi(psidpsi, rzphi[0], rzphi[2], rzphi[1], time,
316 &sim->B_data);
317
318 int iter = 0;
319 while(1) {
320 if( B_field_eval_psi_dpsi(psidpsi, rzphi[0], rzphi[2], rzphi[1], time,
321 &sim->B_data) ) {
322 break;
323 }
324 nextrzphi[0] = rzphi[0] - step * psidpsi[1]; // R
325 nextrzphi[1] = rzphi[1] - step * psidpsi[3]; // z
326 nextrzphi[2] = rzphi[2] - step/rzphi[0] * psidpsi[2]; /* phi. phidpsi[2]
327 is dimensionless,
328 must divide by R
329 because in
330 cylindrical
331 co-ordinates */
332
333 /* Check that phi remained inside the sector. If not, use the value on
334 the sector boundary. */
335 if (nextrzphi[2] > phimax) {nextrzphi[2] = phimax;}
336 if (nextrzphi[2] < phimin) {nextrzphi[2]=phimin;}
337
338 /* Check convergence (phi difference must be multiplied by R to get
339 the arc length which has dimensions of L) */
340 if(sqrt( (nextrzphi[0] - rzphi[0]) * (nextrzphi[0] - rzphi[0])
341 + (nextrzphi[1] - rzphi[1]) * (nextrzphi[1] - rzphi[1])
342 + rzphi[0]*(nextrzphi[2] - rzphi[2]) *
343 rzphi[0]*(nextrzphi[2] - rzphi[2])) < tol){
344 psi[0] = psidpsi[0];
345 rzphi[0] = nextrzphi[0];
346 rzphi[1] = nextrzphi[1];
347 rzphi[2] = nextrzphi[2];
348
349 // Add a bit of padding
351 psidpsi, rzphi[0], rzphi[2], rzphi[1], time, &sim->B_data);
352 psi[0] = psi[0]
353 + (tol * ( psidpsi[1] + psidpsi[2]/rzphi[0] + psidpsi[3] ));
354 break;
355 }
356
357 rzphi[0] = nextrzphi[0];
358 rzphi[1] = nextrzphi[1];
359 rzphi[2] = nextrzphi[2];
360 iter++;
361
362 if(iter == maxiter) {
363 break;
364 }
365 }
366}
367
368
383 sim_data* sim, int Neval, real* R, real* phi, real* z, real* t,
384 real* ER, real* Ephi, real* Ez) {
385
386 #pragma omp parallel for
387 for(int k = 0; k < Neval; k++) {
388 real E[3];
389 if( E_field_eval_E(E, R[k], phi[k], z[k], t[k],
390 &sim->E_data, &sim->B_data) ) {
391 continue;
392 }
393 ER[k] = E[0];
394 Ephi[k] = E[1];
395 Ez[k] = E[2];
396 }
397}
398
409
420 sim_data* sim, real* mass, real* charge, int* anum, int* znum) {
421
422 int n_species = plasma_get_n_species(&sim->plasma_data);
423 const real* m = plasma_get_species_mass(&sim->plasma_data);
425 const int* a = plasma_get_species_anum(&sim->plasma_data);
426 const int* z = plasma_get_species_znum(&sim->plasma_data);
427 mass[0] = CONST_M_E;
428 charge[0] = -CONST_E;
429 anum[0] = 0;
430 znum[0] = 0;
431 for(int i=1; i<n_species; i++) {
432 mass[i] = m[i];
433 charge[i] = q[i];
434 anum[i] = a[i-1];
435 znum[i] = z[i-1];
436 }
437}
438
452 sim_data* sim, int Neval, real* R, real* phi, real* z, real* t,
453 real* dens, real* temp) {
454
455 int n_species = plasma_get_n_species(&sim->plasma_data);
456
457 #pragma omp parallel for
458 for(int k = 0; k < Neval; k++) {
459 real psi[1], rho[2], n[MAX_SPECIES], T[MAX_SPECIES];
460 if( B_field_eval_psi(psi, R[k], phi[k], z[k], t[k], &sim->B_data) ) {
461 continue;
462 }
463 if( B_field_eval_rho(rho, psi[0], &sim->B_data) ) {
464 continue;
465 }
466 if( plasma_eval_densandtemp(n, T, rho[0], R[k], phi[k], z[k], t[k],
467 &sim->plasma_data) ) {
468 continue;
469 }
470 for(int i=0; i<n_species; i++) {
471 dens[k + i*Neval] = n[i];
472 temp[k + i*Neval] = T[i]/CONST_E;
473 }
474 }
475}
476
489 sim_data* sim, int Neval, real* R, real* phi, real* z, real* t, real* dens) {
490
491 #pragma omp parallel for
492 for(int k = 0; k < Neval; k++) {
493 real psi[1], rho[2], n0[1];
494 if( B_field_eval_psi(psi, R[k], phi[k], z[k], t[k], &sim->B_data) ) {
495 continue;
496 }
497 if( B_field_eval_rho(rho, psi[0], &sim->B_data) ) {
498 continue;
499 }
500 if( neutral_eval_n0(n0, rho[0], R[k], phi[k], z[k], t[k],
501 &sim->neutral_data) ) {
502 continue;
503 }
504 dens[k] = n0[0];
505 }
506}
507
532 sim_data* sim, int Neval,
533 real* R, real* phi, real* z, real* t, real* psi, real* theta, real* zeta,
534 real* dpsidr, real* dpsidphi, real* dpsidz, real* dthetadr,
535 real* dthetadphi, real* dthetadz, real* dzetadr, real* dzetadphi,
536 real* dzetadz, real* rho) {
537
538 #pragma omp parallel for
539 for(int k = 0; k < Neval; k++) {
540 int isinside;
541 real psithetazeta[12], rhoval[2];
542 if( boozer_eval_psithetazeta(psithetazeta, &isinside, R[k], phi[k],
543 z[k], &sim->B_data, &sim->boozer_data) ) {
544 continue;
545 }
546 if(!isinside) {
547 continue;
548 }
549 if( B_field_eval_rho(rhoval, psithetazeta[0], &sim->B_data) ) {
550 continue;
551 }
552 psi[k] = psithetazeta[0];
553 theta[k] = psithetazeta[4];
554 zeta[k] = psithetazeta[8];
555 dpsidr[k] = psithetazeta[1];
556 dpsidphi[k] = psithetazeta[2];
557 dpsidz[k] = psithetazeta[3];
558 dthetadr[k] = psithetazeta[5];
559 dthetadphi[k] = psithetazeta[6];
560 dthetadz[k] = psithetazeta[7];
561 dzetadr[k] = psithetazeta[9];
562 dzetadphi[k] = psithetazeta[10];
563 dzetadz[k] = psithetazeta[11];
564 rho[k] = rhoval[0];
565 }
566}
567
582 sim_data* sim, int Neval, real* R, real* phi, real* z, real* t,
583 real* qprof, real* jac, real* jacB2) {
584
585 #pragma omp parallel for
586 for(int k = 0; k < Neval; k++) {
587 int isinside;
588 real psithetazeta[12], B[15];
589 if( boozer_eval_psithetazeta(psithetazeta, &isinside, R[k], phi[k],
590 z[k], &sim->B_data, &sim->boozer_data) ) {
591 continue;
592 }
593 if(!isinside) {
594 continue;
595 }
596 if( B_field_eval_B_dB(B, R[k], phi[k], z[k], t[k], &sim->B_data) ) {
597 continue;
598 }
599
600 real bvec[] = {B[0], B[4], B[8]};
601 real gradpsi[] = {psithetazeta[1],
602 psithetazeta[2]/R[k],
603 psithetazeta[3]};
604 real gradtheta[] = {psithetazeta[5],
605 psithetazeta[6]/R[k],
606 psithetazeta[7]};
607 real gradzeta[] = {psithetazeta[9],
608 psithetazeta[10]/R[k],
609 psithetazeta[11]};
610
611 real veca[3], vecb[3];
612
613 math_cross(gradpsi, gradzeta, veca);
614 math_cross(gradpsi, gradtheta, vecb);
615 qprof[k] = (veca[1] - bvec[1]) / vecb[1];
616
617 math_cross(gradtheta, gradzeta, veca);
618 jac[k] = -1.0 / math_dot(veca, gradpsi);
619 jacB2[k] = jac[k]*math_norm(bvec)*math_norm(bvec);
620 }
621}
622
631
632 return mhd_get_n_modes(&sim->mhd_data);
633}
634
646 sim_data* sim, int* nmode, int* mmode, real* amplitude, real* omega,
647 real* phase) {
648
649 int n_modes = mhd_get_n_modes(&sim->mhd_data);
650 const int* n = mhd_get_nmode(&sim->mhd_data);
651 const int* m = mhd_get_mmode(&sim->mhd_data);
652 const real* a = mhd_get_amplitude(&sim->mhd_data);
653 const real* o = mhd_get_frequency(&sim->mhd_data);
654 const real* p = mhd_get_phase(&sim->mhd_data);
655 for(int i=0; i<n_modes; i++) {
656 nmode[i] = n[i];
657 mmode[i] = m[i];
658 amplitude[i] = a[i];
659 omega[i] = o[i];
660 phase[i] = p[i];
661 }
662}
663
686 sim_data* sim, int Neval,
687 real* R, real* phi, real* z, real* t, int includemode,
688 real* alpha, real* dadr, real* dadphi, real* dadz, real* dadt, real* Phi,
689 real* dPhidr, real* dPhidphi, real* dPhidz, real* dPhidt) {
690
691 #pragma omp parallel for
692 for(int k = 0; k < Neval; k++) {
693 real mhd_dmhd[10];
694 if( mhd_eval(mhd_dmhd, R[k], phi[k], z[k], t[k], includemode,
695 &sim->boozer_data, &sim->mhd_data, &sim->B_data) ) {
696 continue;
697 }
698 alpha[k] = mhd_dmhd[0];
699 dadr[k] = mhd_dmhd[2];
700 dadphi[k] = mhd_dmhd[3];
701 dadz[k] = mhd_dmhd[4];
702 dadt[k] = mhd_dmhd[1];
703 Phi[k] = mhd_dmhd[5];
704 dPhidr[k] = mhd_dmhd[7];
705 dPhidphi[k] = mhd_dmhd[8];
706 dPhidz[k] = mhd_dmhd[9];
707 dPhidt[k] = mhd_dmhd[6];
708 }
709}
710
730 sim_data* sim, int Neval,
731 real* R, real* phi, real* z, real* t, int includemode, real* mhd_br,
732 real* mhd_bphi, real* mhd_bz, real* mhd_er, real* mhd_ephi, real* mhd_ez,
733 real* mhd_phi) {
734
735 int onlypert = 1;
736 #pragma omp parallel for
737 for(int k = 0; k < Neval; k++) {
738 real pert_field[7];
739 if( mhd_perturbations(pert_field, R[k], phi[k], z[k], t[k], onlypert,
740 includemode, &sim->boozer_data, &sim->mhd_data,
741 &sim->B_data) ) {
742 continue;
743 }
744 mhd_br[k] = pert_field[0];
745 mhd_bphi[k] = pert_field[1];
746 mhd_bz[k] = pert_field[2];
747 mhd_er[k] = pert_field[3];
748 mhd_ephi[k] = pert_field[4];
749 mhd_ez[k] = pert_field[5];
750 mhd_phi[k] = pert_field[6];
751 }
752}
753
781 sim_data* sim, int Neval, real* R, real* phi, real* z, real* t,
782 int Nv, real* va, real ma, real qa, real* F, real* Dpara, real* Dperp,
783 real* K, real* nu, real* Q, real* dQ, real* dDpara, real* clog,
784 real* mu0, real* mu1, real* dmu0) {
785
786 /* Evaluate plasma parameters */
787 int n_species = plasma_get_n_species(&sim->plasma_data);
788 const real* qb = plasma_get_species_charge(&sim->plasma_data);
789 const real* mb = plasma_get_species_mass(&sim->plasma_data);
790
791 #pragma omp parallel for
792 for(int k=0; k<Neval; k++) {
793 real mufun[3] = {0., 0., 0.};
794
795 /* Evaluate rho as it is needed to evaluate plasma parameters */
796 real psi, rho[2];
797 if( B_field_eval_psi(&psi, R[k], phi[k], z[k], t[k], &sim->B_data) ) {
798 continue;
799 }
800 if( B_field_eval_rho(rho, psi, &sim->B_data) ) {
801 continue;
802 }
803
805 if( plasma_eval_densandtemp(nb, Tb, rho[0], R[k], phi[k], z[k], t[k],
806 &sim->plasma_data) ) {
807 continue;
808 }
809
810 /* Evaluate coefficients for different velocities */
811 for(int iv=0; iv<Nv; iv++) {
812
813 /* Loop through all plasma species */
814 for(int ib=0; ib<n_species; ib++) {
815
816 /* Coulomb logarithm */
817 real clogab[MAX_SPECIES];
818 mccc_coefs_clog(clogab, ma, qa, va[iv], n_species, mb, qb,
819 nb, Tb);
820
821 /* Special functions */
822 real vb = sqrt( 2 * Tb[ib] / mb[ib] );
823 real x = va[iv] / vb;
824 mccc_coefs_mufun(mufun, x, &sim->mccc_data);
825
826 /* Coefficients */
827 real Fb = mccc_coefs_F(ma, qa, mb[ib], qb[ib], nb[ib], vb,
828 clogab[ib], mufun[0]);
829 real Qb = mccc_coefs_Q(ma, qa, mb[ib], qb[ib], nb[ib], vb,
830 clogab[ib], mufun[0]);
831 real dQb = mccc_coefs_dQ(ma, qa, mb[ib], qb[ib], nb[ib], vb,
832 clogab[ib], mufun[2]);
833 real Dparab = mccc_coefs_Dpara(ma, qa, va[iv], qb[ib], nb[ib],
834 vb, clogab[ib], mufun[0]);
835 real Dperpb = mccc_coefs_Dperp(ma, qa, va[iv], qb[ib], nb[ib],
836 vb, clogab[ib], mufun[1]);
837 real dDparab = mccc_coefs_dDpara(ma, qa, va[iv], qb[ib], nb[ib],
838 vb, clogab[ib], mufun[0],
839 mufun[2]);
840 real Kb = mccc_coefs_K(va[iv], Dparab, dDparab, Qb);
841 real nub = mccc_coefs_nu(va[iv], Dperpb);
842
843 /* Store requested quantities */
844 int idx = ib*Nv*Neval + Nv * k + iv;
845 if(mu0 != NULL) { mu0[idx] = mufun[0]; }
846 if(mu1 != NULL) { mu1[idx] = mufun[1]; }
847 if(dmu0 != NULL) { dmu0[idx] = mufun[2]; }
848 if(clog != NULL) { clog[idx] = clogab[ib]; }
849 if(F != NULL) { F[idx] = Fb; }
850 if(Dpara != NULL) { Dpara[idx] = Dparab; }
851 if(Dperp != NULL) { Dperp[idx] = Dperpb; }
852 if(K != NULL) { K[idx] = Kb; }
853 if(nu != NULL) { nu[idx] = nub; }
854 if(Q != NULL) { Q[idx] = Qb; }
855 if(dQ != NULL) { dQ[idx] = dQb; }
856 if(dDpara != NULL) { dDpara[idx] = dDparab; }
857 }
858 }
859 }
860}
861
880 sim_data* sim,
881 int Neval, real* R, real* phi, real* z, real* t, int Nv, real* va,
882 int Aa, int Za, real ma, int reac_type, real* ratecoeff) {
883
884 const int* Zb = plasma_get_species_znum(&sim->plasma_data);
885 const int* Ab = plasma_get_species_anum(&sim->plasma_data);
886 int nion = plasma_get_n_species(&sim->plasma_data) - 1;
887 int nspec = neutral_get_n_species(&sim->neutral_data);
888
889 #pragma omp parallel for
890 for (int k=0; k < Neval; k++) {
891 real psi[1], rho[2], T0[1], n[MAX_SPECIES], T[MAX_SPECIES],
892 n0[MAX_SPECIES];
893 if( B_field_eval_psi(psi, R[k], phi[k], z[k], t[k], &sim->B_data) ) {
894 continue;
895 }
896 if( B_field_eval_rho(rho, psi[0], &sim->B_data) ) {
897 continue;
898 }
899 if( plasma_eval_densandtemp(n, T, rho[0], R[k], phi[k], z[k], t[k],
900 &sim->plasma_data) ) {
901 continue;
902 }
903 if( neutral_eval_t0(T0, rho[0], R[k], phi[k], z[k], t[k],
904 &sim->neutral_data) ) {
905 continue;
906 }
907 if( neutral_eval_n0(n0, rho[0], R[k], phi[k], z[k], t[k],
908 &sim->neutral_data) ) {
909 continue;
910 }
911 for (int j=0; j < Nv; j++) {
912 real E = (physlib_gamma_vnorm(va[j]) - 1.0) * ma * CONST_C*CONST_C;
913 real val;
914 switch (reac_type) {
915 case sigmav_CX:
916 if( asigma_eval_cx(
917 &val, Za, Aa, E, ma, nspec, Zb, Ab, T0[0], n0,
918 &sim->asigma_data) ) {
919 continue;
920 }
921 ratecoeff[Nv*k + j] = val;
922 break;
923 case sigmav_BMS:
924 if( asigma_eval_bms(
925 &val, Za, Aa, E, ma, nion, Zb, Ab, T[0], n,
926 &sim->asigma_data) ) {
927 continue;
928 }
929 ratecoeff[Nv*k + j] = val * n[0];
930 break;
931 default:
932 break;
933 }
934 }
935 }
936
937}
938
985 sim_data* sim, real* B_offload_array, int Neval,
986 real* R, real* phi, real* z, real* t, real mass, real q, real vpar,
987 real* Eplus_real, real* Eminus_real, real* Eplus_imag, real* Eminus_imag,
988 real* res_cond) {
989
990 #pragma omp parallel
991 {
992 /* The function that evaluates resonance condition takes an RFOF marker
993 * as an input. However, only the R and vpar values are actually used.
994 * Therefore, we initialize a dummy marker and adjust only the values of
995 * R and vpar. */
996 rfof_marker rfof_mrk;
997 int dummy_int = 1;
998 real dummy_real = -999.0; /*-999.0 to be on the safe side */
999 rfof_set_up(&rfof_mrk, &sim->rfof_data);
1000
1001 #pragma omp for
1002 for(int k = 0; k < Neval; k++) {
1003 real B[3];
1004 if( B_field_eval_B(B, R[k], phi[k], z[k], t[k], &sim->B_data) ) {
1005 continue;
1006 }
1007 real B_magn = sqrt(B[0]*B[0] + B[1]*B[1] + B[2]*B[2]);
1008 real gyrofreq = q * B_magn / mass;
1009 rfof_set_marker_manually(&rfof_mrk, &dummy_int,
1010 &dummy_real, &(R[k]), &dummy_real, &dummy_real, &dummy_real,
1011 &dummy_real, &dummy_real, &dummy_real, &dummy_real, &dummy_real,
1012 &dummy_real, &vpar, &dummy_real, &gyrofreq, &dummy_real,
1013 &dummy_real, &dummy_int, &dummy_int);
1014
1015 int nharm; /* For storing return value which is not used */
1016 rfof_eval_resonance_function(
1017 &(res_cond[k]), &nharm, &rfof_mrk, &sim->rfof_data);
1018
1019 // TODO: this should return a non-zero value for failed evaluations
1020 rfof_eval_rf_wave(
1021 &(Eplus_real[k]), &(Eminus_real[k]), &(Eplus_imag[k]),
1022 &(Eminus_imag[k]), R[k], z[k], &sim->rfof_data);
1023 }
1024 rfof_tear_down(&rfof_mrk);
1025 }
1026}
a5err B_field_eval_psi_dpsi(real psi_dpsi[4], real r, real phi, real z, real t, B_field_data *Bdata)
Evaluate poloidal flux psi and its derivatives.
Definition B_field.c:166
a5err B_field_eval_rho(real rho[2], real psi, B_field_data *Bdata)
Evaluate normalized poloidal flux rho and its psi derivative.
Definition B_field.c:228
a5err B_field_eval_psi(real *psi, real r, real phi, real z, real t, B_field_data *Bdata)
Evaluate poloidal flux psi.
Definition B_field.c:102
a5err B_field_eval_B_dB(real B_dB[15], real r, real phi, real z, real t, B_field_data *Bdata)
Evaluate magnetic field and its derivatives.
Definition B_field.c:449
a5err B_field_eval_rho_drho(real rho_drho[4], real r, real phi, real z, B_field_data *Bdata)
Evaluate normalized poloidal flux rho and its derivatives.
Definition B_field.c:312
a5err B_field_get_axis_rz(real rz[2], B_field_data *Bdata, real phi)
Return magnetic axis Rz-coordinates.
Definition B_field.c:501
a5err B_field_eval_B(real B[3], real r, real phi, real z, real t, B_field_data *Bdata)
Evaluate magnetic field.
Definition B_field.c:374
Header file for B_field.c.
a5err E_field_eval_E(real E[3], real r, real phi, real z, real t, E_field_data *Edata, B_field_data *Bdata)
Evaluate electric field.
Definition E_field.c:82
Header file for E_field.c.
Main header file for ASCOT5.
double real
Definition ascot5.h:85
#define MAX_SPECIES
Maximum number of plasma species.
Definition ascot5.h:95
a5err asigma_eval_cx(real *ratecoeff, int z_1, int a_1, real E, real mass, int nspec, const int *znum, const int *anum, real T_0, real *n_0, asigma_data *asigma_data)
Evaluate charge exchange rate coefficient.
Definition asigma.c:191
a5err asigma_eval_bms(real *ratecoeff, int z_1, int a_1, real E, real mass, int nion, const int *znum, const int *anum, real T_e, real *n_i, asigma_data *asigma_data)
Evaluate beam stopping rate coefficient.
Definition asigma.c:237
Header file for asigma.c.
a5err boozer_eval_psithetazeta(real psithetazeta[12], int *isinside, real r, real phi, real z, B_field_data *Bdata, boozer_data *boozerdata)
Evaluate Boozer coordinates and partial derivatives.
Definition boozer.c:124
Header file for boozer.c.
Header file containing physical and mathematical constants.
#define CONST_M_E
Electron mass [kg].
Definition consts.h:41
#define CONST_C
Speed of light [m/s].
Definition consts.h:23
#define CONST_E
Elementary charge [C].
Definition consts.h:35
Header file for hdf5_bfield.c.
Header file for hdf5_boozer.c.
Header file for hdf5_efielc.c.
Header file for hdf5_helpers.h.
Header file for hdf5_interface.c.
Header file for hdf5_mhd.c.
Header file for hdf5_neutral.c.
Header file for hdf5_plasma.c.
Header file for hdf5_wall.c.
@ R
Definition hist.h:18
void libascot_neutral_eval_density(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, real *dens)
Evaluate neutral density at given coordinates.
Definition libascot.c:488
void libascot_eval_rfof(sim_data *sim, real *B_offload_array, int Neval, real *R, real *phi, real *z, real *t, real mass, real q, real vpar, real *Eplus_real, real *Eminus_real, real *Eplus_imag, real *Eminus_imag, real *res_cond)
Evaluate ICRH electric field and the resonance condition.
Definition libascot.c:984
void libascot_E_field_eval_E(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, real *ER, real *Ephi, real *Ez)
Evaluate electric field vector at given coordinates.
Definition libascot.c:382
void libascot_eval_collcoefs(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, int Nv, real *va, real ma, real qa, real *F, real *Dpara, real *Dperp, real *K, real *nu, real *Q, real *dQ, real *dDpara, real *clog, real *mu0, real *mu1, real *dmu0)
Evaluate collision coefficients.
Definition libascot.c:780
void libascot_boozer_eval_fun(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, real *qprof, real *jac, real *jacB2)
Evaluate boozer coordinates related quantities.
Definition libascot.c:581
void libascot_B_field_gradient_descent_3d(sim_data *sim, real psi[1], real rzphi[3], real phimin, real phimax, real step, real tol, int maxiter, int ascent)
Find one psi minimum using the gradient descent method for 3D field inside a sector (phimin < phi < p...
Definition libascot.c:304
void libascot_eval_ratecoeff(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, int Nv, real *va, int Aa, int Za, real ma, int reac_type, real *ratecoeff)
Evaluate atomic reaction rate coefficient.
Definition libascot.c:879
void libascot_mhd_eval_perturbation(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, int includemode, real *mhd_br, real *mhd_bphi, real *mhd_bz, real *mhd_er, real *mhd_ephi, real *mhd_ez, real *mhd_phi)
Evaluate MHD perturbation EM-field components.
Definition libascot.c:729
int libascot_plasma_get_n_species(sim_data *sim)
Get number of plasma species.
Definition libascot.c:406
void libascot_mhd_get_mode_specs(sim_data *sim, int *nmode, int *mmode, real *amplitude, real *omega, real *phase)
Get MHD mode amplitude, frequency, phase, and mode numbers.
Definition libascot.c:645
void libascot_plasma_eval_background(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, real *dens, real *temp)
Evaluate plasma density and temperature at given coordinates.
Definition libascot.c:451
void libascot_boozer_eval_psithetazeta(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, real *psi, real *theta, real *zeta, real *dpsidr, real *dpsidphi, real *dpsidz, real *dthetadr, real *dthetadphi, real *dthetadz, real *dzetadr, real *dzetadphi, real *dzetadz, real *rho)
Evaluate boozer coordinates and derivatives.
Definition libascot.c:531
int libascot_mhd_get_n_modes(sim_data *sim)
Get number of MHD modes.
Definition libascot.c:630
void libascot_B_field_gradient_descent(sim_data *sim, real psi[1], real rz[2], real phi, real step, real tol, int maxiter, int ascent)
Find psi on axis using the gradient descent method.
Definition libascot.c:241
void libascot_B_field_rhotheta2rz(sim_data *sim, int Neval, real *rho, real *theta, real *phi, real t, int maxiter, real tol, real *r, real *z)
Map (rho, theta, phi) to (R,z) coordinates.
Definition libascot.c:173
void libascot_B_field_eval_B_dB(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, real *BR, real *Bphi, real *Bz, real *BR_dR, real *BR_dphi, real *BR_dz, real *Bphi_dR, real *Bphi_dphi, real *Bphi_dz, real *Bz_dR, real *Bz_dphi, real *Bz_dz)
Evaluate magnetic field vector and derivatives at given coordinates.
Definition libascot.c:65
void libascot_B_field_get_axis(sim_data *sim, int Neval, real *phi, real *Raxis, real *zaxis)
Get magnetic axis at given coordinates.
Definition libascot.c:141
void libascot_plasma_get_species_mass_and_charge(sim_data *sim, real *mass, real *charge, int *anum, int *znum)
Get mass and charge of all plasma species.
Definition libascot.c:419
void libascot_mhd_eval(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, int includemode, real *alpha, real *dadr, real *dadphi, real *dadz, real *dadt, real *Phi, real *dPhidr, real *dPhidphi, real *dPhidz, real *dPhidt)
Evaluate MHD perturbation potentials.
Definition libascot.c:685
void libascot_B_field_eval_rho(sim_data *sim, int Neval, real *R, real *phi, real *z, real *t, real *rho, real *drhodpsi, real *psi, real *dpsidr, real *dpsidphi, real *dpsidz)
Evaluate normalized poloidal flux at given coordinates.
Definition libascot.c:108
Header file for math.c.
#define math_dot(a, b)
Calculate dot product a[3] dot b[3].
Definition math.h:32
#define math_cross(a, b, c)
Calculate cross product for 3D vectors c = a x b.
Definition math.h:35
#define math_norm(a)
Calculate norm of 3D vector a.
Definition math.h:68
Routines to evaluate coefficients needed to evaluate collisions.
#define mccc_coefs_Dpara(ma, qa, va, qb, nb, vb, clogab, mu0)
Evaluate non-relativistic parallel diffusion coefficient [m^2/s^3].
Definition mccc_coefs.h:103
#define mccc_coefs_dDpara(ma, qa, va, qb, nb, vb, clogab, mu0, dmu0)
Evaluate derivative of non-relativistic parallel diffusion coefficient [m/s^2].
Definition mccc_coefs.h:126
#define mccc_coefs_dQ(ma, qa, mb, qb, nb, vb, clogab, dmu0)
Evaluate derivative of non-relativistic drag coefficient [m/s^2].
Definition mccc_coefs.h:61
#define mccc_coefs_K(va, Dpara, dDpara, Q)
Evaluate guiding center drag coefficient [m/s^2].
Definition mccc_coefs.h:167
static void mccc_coefs_mufun(real mufun[3], real x, mccc_data *mdata)
Evaluate special functions needed by collision coefficients.
Definition mccc_coefs.h:275
#define mccc_coefs_Dperp(ma, qa, va, qb, nb, vb, clogab, mu1)
Evaluate non-relativistic perpendicular diffusion coefficient [m^2/s^3].
Definition mccc_coefs.h:150
#define mccc_coefs_nu(va, Dperp)
Evaluate pitch collision frequency [1/s].
Definition mccc_coefs.h:180
#define mccc_coefs_F(ma, qa, mb, qb, nb, vb, clogab, mu0)
Evaluate non-relativistic friction coefficient [m/s^2].
Definition mccc_coefs.h:80
static DECLARE_TARGET_END void mccc_coefs_clog(real *clogab, real ma, real qa, real va, int nspec, const real *mb, const real *qb, const real *nb, const real *Tb)
Evaluate Coulomb logarithm.
Definition mccc_coefs.h:228
#define mccc_coefs_Q(ma, qa, mb, qb, nb, vb, clogab, mu0)
Evaluate non-relativistic drag coefficient [m/s^2].
Definition mccc_coefs.h:43
int mhd_get_n_modes(mhd_data *mhddata)
Return number of modes.
Definition mhd.c:183
const real * mhd_get_amplitude(mhd_data *mhddata)
Return mode amplitudes.
Definition mhd.c:243
const int * mhd_get_nmode(mhd_data *mhddata)
Return mode toroidal numbers.
Definition mhd.c:203
a5err mhd_perturbations(real pert_field[7], real r, real phi, real z, real t, int pertonly, int includemode, boozer_data *boozerdata, mhd_data *mhddata, B_field_data *Bdata)
Evaluate perturbed fields Btilde, Etilde and potential Phi explicitly.
Definition mhd.c:147
const int * mhd_get_mmode(mhd_data *mhddata)
Return mode poloidal numbers.
Definition mhd.c:223
const real * mhd_get_frequency(mhd_data *mhddata)
Return mode frequencies.
Definition mhd.c:263
a5err mhd_eval(real mhd_dmhd[10], real r, real phi, real z, real t, int includemode, boozer_data *boozerdata, mhd_data *mhddata, B_field_data *Bdata)
Evaluate the needed quantities from MHD mode for orbit following.
Definition mhd.c:91
const real * mhd_get_phase(mhd_data *mhddata)
Return mode phases.
Definition mhd.c:283
Header file for mhd.c.
int neutral_get_n_species(neutral_data *ndata)
Get the number of neutral species.
Definition neutral.c:151
a5err neutral_eval_n0(real *n0, real rho, real r, real phi, real z, real t, neutral_data *ndata)
Evaluate neutral density.
Definition neutral.c:73
a5err neutral_eval_t0(real *t0, real rho, real r, real phi, real z, real t, neutral_data *ndata)
Evaluate neutral temperature.
Definition neutral.c:115
Header file for neutral.c.
Methods to evaluate elementary physical quantities.
#define physlib_gamma_vnorm(v)
Evaluate Lorentz factor from velocity norm.
Definition physlib.h:21
const real * plasma_get_species_mass(plasma_data *pls_data)
Get mass of all plasma species.
Definition plasma.c:314
const int * plasma_get_species_znum(plasma_data *pls_data)
Get charge number of ion species.
Definition plasma.c:372
int plasma_get_n_species(plasma_data *pls_data)
Get the number of plasma species.
Definition plasma.c:284
const real * plasma_get_species_charge(plasma_data *pls_data)
Get charge of all plasma species.
Definition plasma.c:344
a5err plasma_eval_densandtemp(real *dens, real *temp, real rho, real r, real phi, real z, real t, plasma_data *pls_data)
Evaluate plasma density and temperature for all species.
Definition plasma.c:186
const int * plasma_get_species_anum(plasma_data *pls_data)
Get atomic mass number of ion species.
Definition plasma.c:400
Header file for plasma.c.
Header file for simulate.c.
Reusable struct for storing marker specific data during the simulation loop.
Definition rfof.h:19
Simulation data struct.
Definition simulate.h:58
plasma_data plasma_data
Definition simulate.h:62
mhd_data mhd_data
Definition simulate.h:66
rfof_data rfof_data
Definition simulate.h:70
E_field_data E_data
Definition simulate.h:61
mccc_data mccc_data
Definition simulate.h:75
neutral_data neutral_data
Definition simulate.h:63
boozer_data boozer_data
Definition simulate.h:65
B_field_data B_data
Definition simulate.h:60
asigma_data asigma_data
Definition simulate.h:67
Header file for wall.c.