ASCOT5
Loading...
Searching...
No Matches
afsi.c
Go to the documentation of this file.
1
5#include <string.h>
6#include <math.h>
7#include <hdf5_hl.h>
8#include "ascot5.h"
9#include "print.h"
10#include "gitver.h"
11#include "math.h"
12#include "physlib.h"
13#include "consts.h"
14#include "offload.h"
15#include "random.h"
16#include "simulate.h"
17#include "boschhale.h"
18#include "diag/hist.h"
19#include "hdf5_interface.h"
20#include "hdf5io/hdf5_helpers.h"
21#include "hdf5io/hdf5_dist.h"
23#include "afsi.h"
24
27
29 int i, real m1, real m2, real mprod1, real mprod2, real Q, int prodmomspace,
30 real* ppara1, real* pperp1, real* ppara2, real* pperp2, real* vcom2,
31 real* prod1_p1, real* prod1_p2, real* prod2_p1, real* prod2_p2);
33 sim_data* sim, afsi_data* afsi, real mass1, real mass2,
34 real vol, int nsample, size_t i0, size_t i1, size_t i2,
35 real r, real phi, real z, real time, real rho,
36 real* density1, real* ppara1, real* pperp1,
37 real* density2, real* ppara2, real* pperp2);
39 histogram* hist, real mass, real vol, int nsample,
40 size_t i0, size_t i1, size_t i2, real* density,
41 real* ppara, real* pperp);
43 sim_data* sim, int ispecies, real mass, int nsample,
44 real r, real phi, real z, real time, real rho,
45 real* density, real* pppara, real* ppperp);
46
62void afsi_run(sim_data* sim, afsi_data* afsi, int n,
63 histogram* prod1, histogram* prod2) {
64 /* QID for this run */
65 char qid[11];
67 strcpy(sim->qid, qid);
68
69 int mpi_rank = 0, mpi_root = 0; /* AFSI does not support MPI */
70 print_out0(VERBOSE_MINIMAL, mpi_rank, mpi_root, "AFSI5\n");
71 print_out0(VERBOSE_MINIMAL, mpi_rank, mpi_root,
72 "Tag %s\nBranch %s\n\n", GIT_VERSION, GIT_BRANCH);
73
74 random_init(&rdata, time((NULL)));
75 strcpy(sim->hdf5_out, sim->hdf5_in);
76 simulate_init(sim);
77
78 if( hdf5_interface_init_results(sim, qid, "afsi") ) {
79 print_out0(VERBOSE_MINIMAL, mpi_rank, mpi_root,
80 "\nInitializing output failed.\n"
81 "See stderr for details.\n");
82 /* Free data and terminate */
83 abort();
84 }
85
86 real m1, q1, m2, q2, mprod1, qprod1, mprod2, qprod2, Q;
88 afsi->reaction, &m1, &q1, &m2, &q2,
89 &mprod1, &qprod1, &mprod2, &qprod2, &Q);
90
91 int prod_mom_space;
92 int i0coord, i1coord, i2coord, p1coord, p2coord;
93 if(prod1->axes[0].n) {
94 i0coord = 0;
95 i1coord = 1;
96 i2coord = 2;
97 }
98 else if(prod1->axes[3].n) {
99 i0coord = 3;
100 i1coord = 4;
101 i2coord = 1;
102 }
103 else {
104 return;
105 }
106 if(prod1->axes[5].n) {
107 p1coord = 5;
108 p2coord = 6;
109 prod_mom_space = PPARPPERP;
110 }
111 else if(prod1->axes[10].n) {
112 p1coord = 10;
113 p2coord = 11;
114 prod_mom_space = EKINXI;
115 }
116 else {
117 return;
118 }
119
120 real time = 0.0;
121 #pragma omp parallel for
122 for(size_t i0 = 0; i0 < afsi->volshape[0]; i0++) {
123 real* ppara1 = (real*) malloc(n*sizeof(real));
124 real* pperp1 = (real*) malloc(n*sizeof(real));
125 real* ppara2 = (real*) malloc(n*sizeof(real));
126 real* pperp2 = (real*) malloc(n*sizeof(real));
127 real* prod1_p1 = (real*) malloc(n*sizeof(real));
128 real* prod1_p2 = (real*) malloc(n*sizeof(real));
129 real* prod2_p1 = (real*) malloc(n*sizeof(real));
130 real* prod2_p2 = (real*) malloc(n*sizeof(real));
131
132 for(size_t i1 = 0; i1 < afsi->volshape[1]; i1++) {
133 for(size_t i2 = 0; i2 < afsi->volshape[2]; i2++) {
134 size_t spatial_index = i0*afsi->volshape[1]*afsi->volshape[2]
135 + i1*afsi->volshape[2] + i2;
136 real r = afsi->r[spatial_index];
137 real z = afsi->z[spatial_index];
138 real phi = afsi->phi[spatial_index];
139 real vol = afsi->vol[spatial_index];
140
141 real psi, rho[2];
142 if(B_field_eval_psi(&psi, r, phi, z, time, &sim->B_data) ||
143 B_field_eval_rho(rho, psi, &sim->B_data) ) {
144 continue;
145 }
146
147 real density1, density2;
149 sim, afsi, m1, m2, vol, n, i0, i1, i2,
150 r, phi, z, time, rho[0],
151 &density1, ppara1, pperp1, &density2, ppara2, pperp2);
152 if(density1 == 0 || density2 == 0) {
153 continue;
154 }
155 for(size_t i = 0; i < n; i++) {
156 real vcom2;
158 i, m1, m2, mprod1, mprod2, Q, prod_mom_space,
159 ppara1, pperp1, ppara2, pperp2, &vcom2,
160 prod1_p1, prod1_p2, prod2_p1, prod2_p2);
161 real E = 0.5 * ( m1 * m2 ) / ( m1 + m2 ) * vcom2;
162
163 real weight = density1 * density2 * sqrt(vcom2)
164 * boschhale_sigma(afsi->reaction, E)/n*vol;
165
166 size_t ip1 = math_bin_index(
167 prod1_p1[i], prod1->axes[p1coord].n,
168 prod1->axes[p1coord].min, prod1->axes[p1coord].max);
169 size_t ip2 = math_bin_index(
170 prod1_p2[i], prod1->axes[p2coord].n,
171 prod1->axes[p2coord].min, prod1->axes[p2coord].max);
172 if( 0 <= ip1 && ip1 < prod1->axes[p1coord].n &&
173 0 <= ip2 && ip2 < prod1->axes[p2coord].n) {
174 size_t index = i0*prod1->strides[i0coord]
175 + i1*prod1->strides[i1coord]
176 + i2*prod1->strides[i2coord]
177 + ip1*prod1->strides[p1coord]
178 + ip2*prod1->strides[p2coord];
179 prod1->bins[index] += weight * afsi->mult;
180 }
181
182 ip1 = math_bin_index(
183 prod2_p1[i], prod2->axes[p1coord].n,
184 prod2->axes[p1coord].min, prod2->axes[p1coord].max);
185 ip2 = math_bin_index(
186 prod2_p2[i], prod2->axes[p2coord].n,
187 prod2->axes[p2coord].min, prod2->axes[p2coord].max);
188 if( 0 <= ip1 && ip1 < prod2->axes[p1coord].n &&
189 0 <= ip2 && ip2 < prod2->axes[p2coord].n) {
190 size_t index = i0*prod2->strides[i0coord]
191 + i1*prod2->strides[i1coord]
192 + i2*prod2->strides[i2coord]
193 + ip1*prod2->strides[p1coord]
194 + ip2*prod2->strides[p2coord];
195 prod2->bins[index] += weight * afsi->mult;
196 }
197 }
198 }
199 }
200 free(ppara1);
201 free(ppara2);
202 free(pperp1);
203 free(pperp2);
204 free(prod1_p1);
205 free(prod1_p2);
206 free(prod2_p1);
207 free(prod2_p2);
208 }
209
210 m1 = m1 / CONST_U;
211 m2 = m2 / CONST_U;
212 mprod1 = mprod1 / CONST_U;
213 mprod2 = mprod2 / CONST_U;
214 int c1 = (int)rint(q1 / CONST_E);
215 int c2 = (int)rint(q2 / CONST_E);
216 int cprod1 = (int)rint(qprod1 / CONST_E);
217 int cprod2 = (int)rint(qprod2 / CONST_E);
218
219 hid_t f = hdf5_open(sim->hdf5_out);
220 if(f < 0) {
221 print_err("Error: File not found.\n");
222 abort();
223 }
224 char path[300];
225 sprintf(path, "/results/afsi_%s/reaction", sim->qid);
226 hid_t reactiondata = H5Gcreate2(f, path, H5P_DEFAULT, H5P_DEFAULT,
227 H5P_DEFAULT);
228 if(reactiondata < 0) {
229 print_err("Failed to write reaction data.\n");
230 abort();
231 }
232 hsize_t size = 1;
233 real q = Q / CONST_E;
234 if(H5LTmake_dataset_double(reactiondata, "m1", 1, &size, &m1)) {
235 print_err("Failed to write reaction data.\n");
236 abort();
237 }
238 if(H5LTmake_dataset_double(reactiondata, "m2", 1, &size, &m2)) {
239 print_err("Failed to write reaction data.\n");
240 abort();
241 }
242 if(H5LTmake_dataset_double(reactiondata, "mprod1", 1, &size, &mprod1)) {
243 print_err("Failed to write reaction data.\n");
244 abort();
245 }
246 if(H5LTmake_dataset_double(reactiondata, "mprod2", 1, &size, &mprod2)) {
247 print_err("Failed to write reaction data.\n");
248 abort();
249 }
250 if(H5LTmake_dataset_double(reactiondata, "q", 1, &size, &q)) {
251 print_err("Failed to write reaction data.\n");
252 abort();
253 }
254 if(H5LTmake_dataset_int(reactiondata, "q1", 1, &size, &c1)) {
255 print_err("Failed to write reaction data.\n");
256 abort();
257 }
258 if(H5LTmake_dataset_int(reactiondata, "q2", 1, &size, &c2)) {
259 print_err("Failed to write reaction data.\n");
260 abort();
261 }
262 if(H5LTmake_dataset_int(reactiondata, "qprod1", 1, &size, &cprod1)) {
263 print_err("Failed to write reaction data.\n");
264 abort();
265 }
266 if(H5LTmake_dataset_int(reactiondata, "qprod2", 1, &size, &cprod2)) {
267 print_err("Failed to write reaction data.\n");
268 abort();
269 }
270 if(H5Gclose(reactiondata)) {
271 print_err("Failed to write reaction data.\n");
272 abort();
273 }
274
275 sprintf(path, "/results/afsi_%s/prod1dist5d", sim->qid);
276 if( hdf5_hist_write(f, path, prod1) ) {
277 print_err("Warning: 5D distribution could not be written.\n");
278 }
279 sprintf(path, "/results/afsi_%s/prod2dist5d", sim->qid);
280 if( hdf5_hist_write(f, path, prod2) ) {
281 print_err("Warning: 5D distribution could not be written.\n");
282 }
283 if(hdf5_close(f)) {
284 print_err("Failed to close the file.\n");
285 abort();
286 }
287
288 print_out0(VERBOSE_MINIMAL, mpi_rank, mpi_root, "\nDone\n");
289}
290
311 int i, real m1, real m2, real mprod1, real mprod2, real Q, int prodmomspace,
312 real* ppara1, real* pperp1, real* ppara2, real* pperp2, real* vcom2,
313 real* prod1_p1, real* prod1_p2, real* prod2_p1, real* prod2_p2) {
314
317
318 real v1x = cos(rn1) * pperp1[i] / m1;
319 real v1y = sin(rn1) * pperp1[i] / m1;
320 real v1z = ppara1[i] / m1;
321
322 real v2x = cos(rn2) * pperp2[i] / m2;
323 real v2y = sin(rn2) * pperp2[i] / m2;
324 real v2z = ppara2[i] / m2;
325
326 *vcom2 = (v1x - v2x) * (v1x - v2x)
327 + (v1y - v2y) * (v1y - v2y)
328 + (v1z - v2z) * (v1z - v2z);
329
330 // Velocity of the system's center of mass
331 real v_cm[3];
332 v_cm[0] = ( m1 * v1x + m2 * v2x ) / ( m1 + m2 );
333 v_cm[1] = ( m1 * v1y + m2 * v2y ) / ( m1 + m2 );
334 v_cm[2] = ( m1 * v1z + m2 * v2z ) / ( m1 + m2 );
335
336 // Total kinetic energy after the reaction in CM frame
337 real ekin = Q
338 + 0.5 * m1 * ( (v1x - v_cm[0])*(v1x - v_cm[0])
339 + (v1y - v_cm[1])*(v1y - v_cm[1])
340 + (v1z - v_cm[2])*(v1z - v_cm[2]) )
341 + 0.5 * m2 * ( (v2x - v_cm[0])*(v2x - v_cm[0])
342 + (v2y - v_cm[1])*(v2y - v_cm[1])
343 + (v2z - v_cm[2])*(v2z - v_cm[2]) );
344
345 // Speed and velocity of product 2 in CM frame
346 rn1 = random_uniform(&rdata);
347 rn2 = random_uniform(&rdata);
348 real phi = CONST_2PI * rn1;
349 real theta = acos( 2 * ( rn2 - 0.5 ) );
350 real vnorm = sqrt( 2.0 * ekin / ( mprod2 * ( 1.0 + mprod2 / mprod1 ) ) );
351
352 real v2_cm[3];
353 v2_cm[0] = vnorm * sin(theta) * cos(phi);
354 v2_cm[1] = vnorm * sin(theta) * sin(phi);
355 v2_cm[2] = vnorm * cos(theta);
356
357 // Products' velocities in lab frame
358 real vprod1[3], vprod2[3];
359 vprod1[0] = -(mprod2/mprod1) * v2_cm[0] + v_cm[0];
360 vprod1[1] = -(mprod2/mprod1) * v2_cm[1] + v_cm[1];
361 vprod1[2] = -(mprod2/mprod1) * v2_cm[2] + v_cm[2];
362 vprod2[0] = v2_cm[0] + v_cm[0];
363 vprod2[1] = v2_cm[1] + v_cm[1];
364 vprod2[2] = v2_cm[2] + v_cm[2];
365
366 if(prodmomspace == PPARPPERP) {
367 prod1_p1[i] = vprod1[2] * mprod1;
368 prod1_p2[i] = sqrt(vprod1[0]*vprod1[0] + vprod1[1]*vprod1[1]) * mprod1;
369 prod2_p1[i] = vprod2[2] * mprod2;
370 prod2_p2[i] = sqrt(vprod2[0]*vprod2[0] + vprod2[1]*vprod2[1]) * mprod2;
371 }
372 else {
373 real vnorm1 = math_norm(vprod1);
374 prod1_p2[i] = vprod1[2] / vnorm1;
375 prod1_p1[i] = physlib_Ekin_gamma(mprod1, physlib_gamma_vnorm(vnorm1));
376
377 real vnorm2 = math_norm(vprod2);
378 prod2_p2[i] = vprod2[2] / vnorm2;
379 prod2_p1[i] = physlib_Ekin_gamma(mprod2, physlib_gamma_vnorm(vnorm2));
380 }
381}
382
400 sim_data* sim, afsi_data* afsi, real mass1, real mass2, real vol,
401 int nsample, size_t i0, size_t i1, size_t i2,
402 real r, real phi, real z, real time, real rho,
403 real* density1, real* ppara1, real* pperp1,
404 real* density2, real* ppara2, real* pperp2) {
405 if(afsi->type1 == 1) {
406 afsi_sample_beam_2d(afsi->beam1, mass1, vol, nsample, i0, i1, i2,
407 density1, ppara1, pperp1);
408 }
409 else if(afsi->type1 == 2) {
410 afsi_sample_thermal_2d(sim, afsi->thermal1, mass1, nsample, r, phi, z,
411 time, rho, density1, ppara1, pperp1);
412 }
413 if(afsi->type2 == 1) {
414 afsi_sample_beam_2d(afsi->beam2, mass2, vol, nsample, i0, i1, i2,
415 density2, ppara2, pperp2);
416 }
417 else if(afsi->type2 == 2) {
418 afsi_sample_thermal_2d(sim, afsi->thermal2, mass2, nsample, r, phi, z,
419 time, rho, density2, ppara2, pperp2);
420 }
421}
422
432void afsi_sample_beam_2d(histogram* hist, real mass, real vol, int nsample,
433 size_t i0, size_t i1, size_t i2,
434 real* density, real* ppara, real* pperp) {
435 int mom_space;
436 size_t p1coord, p2coord;
437 if(hist->axes[5].n) {
438 p1coord = 5;
439 p2coord = 6;
440 mom_space = PPARPPERP;
441 }
442 else if(hist->axes[10].n) {
443 p1coord = 10;
444 p2coord = 11;
445 mom_space = EKINXI;
446 }
447 else {
448 return;
449 }
450
451 real* cumdist = (real*) malloc(
452 hist->axes[p1coord].n*hist->axes[p2coord].n*sizeof(real));
453
454 *density = 0.0;
455 for(size_t ip1 = 0; ip1 < hist->axes[p1coord].n; ip1++) {
456 for(size_t ip2 = 0; ip2 < hist->axes[p2coord].n; ip2++) {
457 size_t index = i0*hist->strides[0]
458 + i1*hist->strides[1]
459 + i2*hist->strides[2]
460 + ip1*hist->strides[p1coord]
461 + ip2*hist->strides[p2coord];
462 if(ip1 == 0 && ip2 == 0) {
463 cumdist[0] = hist->bins[index];
464 } else {
465 cumdist[ip1*hist->axes[p2coord].n+ip2] =
466 cumdist[ip1*hist->axes[p2coord].n+ip2-1]
467 + hist->bins[index];
468 }
469 *density += hist->bins[index] / vol;
470 }
471 }
472 if(*density == 0) {
473 return;
474 }
475
476 for(size_t i = 0; i < nsample; i++) {
478 r *= cumdist[hist->axes[p1coord].n*hist->axes[p2coord].n-1];
479 for(size_t j = 0; j < hist->axes[p1coord].n*hist->axes[p2coord].n; j++) {
480 if(cumdist[j] > r) {
481 if(mom_space == PPARPPERP) {
482 ppara[i] = hist->axes[5].min + (j / hist->axes[5].n + 0.5)
483 * (hist->axes[5].max - hist->axes[5].min) / hist->axes[5].n;
484 pperp[i] = hist->axes[6].min + (j % hist->axes[6].n + 0.5)
485 * (hist->axes[6].max - hist->axes[6].min) / hist->axes[6].n;
486 }
487 else {
488 real ekin = hist->axes[10].min + (j / hist->axes[10].n + 0.5)
489 * (hist->axes[10].max - hist->axes[10].min) / hist->axes[10].n;
490 real pitch = hist->axes[11].min + (j / hist->axes[11].n + 0.5)
491 * (hist->axes[11].max - hist->axes[11].min) / hist->axes[11].n;
492 real gamma = physlib_gamma_Ekin(mass, ekin);
493 real pnorm = sqrt(gamma * gamma - 1.0) * mass * CONST_C;
494 ppara[i] = pitch * pnorm;
495 pperp[i] = sqrt( 1.0 - pitch*pitch ) * pnorm;
496 }
497 break;
498 }
499 }
500 }
501 free(cumdist);
502}
503
518void afsi_sample_thermal_2d(sim_data* sim, int ispecies, real mass, int nsample,
519 real r, real phi, real z, real time, real rho,
520 real* density, real* ppara, real* pperp) {
521 real ni, ti;
522 if( plasma_eval_dens(&ni, rho, r, phi, z, time, ispecies,
523 &sim->plasma_data) ||
524 plasma_eval_temp(&ti, rho, r, phi, z, time, ispecies,
525 &sim->plasma_data) ) {
526 *density = 0.0;
527 return;
528 }
529 *density = ni;
530 for(int i = 0; i < nsample; i++) {
531 real r1, r2, r3, r4, E;
532
533 r1 = random_uniform(&rdata);
534 r2 = random_uniform(&rdata);
535 r3 = cos( 0.5 * random_uniform(&rdata) * CONST_PI );
536 E = -ti * ( log(r1) + log(r2) * r3 * r3 );
537
538 r4 = 1.0 - 2 * random_uniform(&rdata);
539 pperp[i] = sqrt( ( 1 - r4*r4 ) * 2 * E * mass);
540 ppara[i] = r4 * sqrt(2 * E * mass);
541 }
542}
a5err B_field_eval_rho(real rho[2], real psi, B_field_data *Bdata)
Evaluate normalized poloidal flux rho and its psi derivative.
Definition B_field.c:228
a5err B_field_eval_psi(real *psi, real r, real phi, real z, real t, B_field_data *Bdata)
Evaluate poloidal flux psi.
Definition B_field.c:102
random_data rdata
Definition afsi.c:26
void afsi_sample_reactant_momenta_2d(sim_data *sim, afsi_data *afsi, real mass1, real mass2, real vol, int nsample, size_t i0, size_t i1, size_t i2, real r, real phi, real z, real time, real rho, real *density1, real *ppara1, real *pperp1, real *density2, real *ppara2, real *pperp2)
Sample velocities from reactant distributions.
Definition afsi.c:399
void afsi_sample_thermal_2d(sim_data *sim, int ispecies, real mass, int nsample, real r, real phi, real z, real time, real rho, real *density, real *pppara, real *ppperp)
Sample ppara and pperp from a thermal (Maxwellian) population.
Definition afsi.c:518
void afsi_sample_beam_2d(histogram *hist, real mass, real vol, int nsample, size_t i0, size_t i1, size_t i2, real *density, real *ppara, real *pperp)
Sample ppara and pperp from a 5D distribution.
Definition afsi.c:432
void afsi_run(sim_data *sim, afsi_data *afsi, int n, histogram *prod1, histogram *prod2)
Calculate fusion source from two arbitrary ion distributions.
Definition afsi.c:62
void afsi_compute_product_momenta_2d(int i, real m1, real m2, real mprod1, real mprod2, real Q, int prodmomspace, real *ppara1, real *pperp1, real *ppara2, real *pperp2, real *vcom2, real *prod1_p1, real *prod1_p2, real *prod2_p1, real *prod2_p2)
Compute momenta of reaction products.
Definition afsi.c:310
Main header file for ASCOT5.
double real
Definition ascot5.h:85
void boschhale_reaction(Reaction reaction, real *m1, real *q1, real *m2, real *q2, real *mprod1, real *qprod1, real *mprod2, real *qprod2, real *Q)
Get masses and charges of particles participating in the reaction and the released energy.
Definition boschhale.c:28
real boschhale_sigma(Reaction reaction, real E)
Estimate cross-section for a given fusion reaction.
Definition boschhale.c:87
Header file for boschdale.c.
Header file containing physical and mathematical constants.
#define CONST_U
Atomic mass unit in kilograms [kg].
Definition consts.h:32
#define CONST_PI
pi
Definition consts.h:11
#define CONST_C
Speed of light [m/s].
Definition consts.h:23
#define CONST_2PI
2*pi
Definition consts.h:14
#define CONST_E
Elementary charge [C].
Definition consts.h:35
herr_t hdf5_close(hid_t file_id)
Close access to given hdf5 file identifier. A negative value is returned on failure.
hid_t hdf5_open(const char *filename)
Open a hdf5 file for reading and writing. A negative value is returned on failure.
Header file for hdf5_helpers.h.
int hdf5_hist_write(hid_t f, char *path, histogram *hist)
Write a histogram object to HDF5 file.
Header file for hdf5_histogram.c.
int hdf5_interface_init_results(sim_data *sim, char *qid, char *run)
Initialize run group.
void hdf5_generate_qid(char *qid)
Generate an identification number for a run.
Header file for hdf5_interface.c.
Header file for hist.c.
Header file for math.c.
#define math_bin_index(x, nx, xmin, xmax)
Find the bin index on a uniform grid.
Definition math.h:22
#define math_norm(a)
Calculate norm of 3D vector a.
Definition math.h:68
Methods to evaluate elementary physical quantities.
#define physlib_gamma_Ekin(m, ekin)
Evaluate Lorentz factor from kinetic energy [J].
Definition physlib.h:103
#define physlib_Ekin_gamma(m, gamma)
Evaluate kinetic energy [J] from Lorentz factor.
Definition physlib.h:91
#define physlib_gamma_vnorm(v)
Evaluate Lorentz factor from velocity norm.
Definition physlib.h:21
a5err plasma_eval_temp(real *temp, real rho, real r, real phi, real z, real t, int species, plasma_data *pls_data)
Evaluate plasma temperature.
Definition plasma.c:90
a5err plasma_eval_dens(real *dens, real rho, real r, real phi, real z, real t, int species, plasma_data *pls_data)
Evaluate plasma density.
Definition plasma.c:138
Macros for printing console output.
@ VERBOSE_MINIMAL
Definition print.h:19
#define print_out0(v, rank, root,...)
Print to standard output only for root process.
Definition print.h:36
#define print_err(...)
Print to standard error.
Definition print.h:42
Header file for random.c.
void * random_data
Definition random.h:87
#define random_uniform(data)
Definition random.h:96
#define random_init(data, seed)
Definition random.h:94
void simulate_init(sim_data *sim)
Initialize simulation data struct.
Definition simulate.c:315
Header file for simulate.c.
Wrapper around input data structures.
Definition afsi.h:27
real * vol
Definition afsi.h:37
real * z
Definition afsi.h:36
histogram * beam1
Definition afsi.h:32
real * r
Definition afsi.h:34
int thermal1
Definition afsi.h:30
real * phi
Definition afsi.h:35
Reaction reaction
Definition afsi.h:39
int thermal2
Definition afsi.h:31
int type2
Definition afsi.h:29
real mult
Definition afsi.h:40
size_t volshape[3]
Definition afsi.h:38
histogram * beam2
Definition afsi.h:33
int type1
Definition afsi.h:28
real min
Definition hist.h:41
real max
Definition hist.h:42
size_t n
Definition hist.h:43
Histogram parameters.
Definition hist.h:52
hist_axis axes[HIST_ALLDIM]
Definition hist.h:53
size_t strides[HIST_ALLDIM-1]
Definition hist.h:54
real * bins
Definition hist.h:56
Simulation data struct.
Definition simulate.h:58
char qid[256]
Definition simulate.h:132
plasma_data plasma_data
Definition simulate.h:62
char hdf5_in[256]
Definition simulate.h:130
B_field_data B_data
Definition simulate.h:60
char hdf5_out[256]
Definition simulate.h:131